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Abstract

The diffusion of Fe, Cr and Ni in one dimension in and between one- and two-phase a/c regions was simulated using independently
assessed thermodynamic and kinetic data. Simulation results compare favourably with experimental results obtained previously by one
of the present authors (A. Engström). For example, the formation of a c layer between an a and a c + a region is correctly predicted.
Neither phase interfaces nor individual phases are explicitly considered; instead, locally averaged kinetic properties are used and locally
minimized Gibbs energy is assumed.
� 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Diffusion processes in multiphase mixtures are of great
practical importance. A typical example is duplex stainless
steels where the properties depend sensitively on the mor-
phology and phase fractions of ferrite (a) and austenite
(c). There are essentially two different approaches to simu-
late these processes. The first approach is to try to solve the
‘full problem’ in two or three dimensions using, for exam-
ple, the phase-field method. The drawback with this
approach is the computational cost which is linked to the
problem of obtaining sufficiently good statistics. The other
approach is to simplify the problem to one dimension,
which results in a computationally cheaper method at the
cost of less microstructural information being obtained.
Clearly, the two approaches are complementary. The pur-
pose of the present work is to introduce a new model for
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one-dimensional simulations of multiphase diffusion
problems.

A model for one-dimensional simulations of diffusion
processes in multiphase systems was suggested by Bongartz
et al. [1] and later extended by Engström et al. [2]. How-
ever, this model, although successfully applied to a large
number of cases (see e.g. Ref. [3]), suffers from drawbacks.
The first is that it relies on the existence of a single contin-
uous matrix phase in which diffusion is assumed to occur.
The second is that it is, in a sense, an inherently explicit
method, which limits the size of time steps. Finally,
Schwind [4] found that it does not conserve matter,
although the error is generally quite small if the volume
fraction of dispersed phases is small.

Another method is due to Morral et al. [5]. This also
relies on a single continuous matrix phase. In the deriva-
tion it is assumed that the volume fraction of dispersed
phases is small and the effect of dispersed phases on the
long-range diffusion is neglected.

Lee [6] developed the method of Engström et al. [2] fur-
ther, making it possible to treat cases where the matrix
phase differs between different regions. However, in Lee’s
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method it is necessary to solve a set of flux balance equa-
tions to obtain the fluxes over, and displacement of, inter-
faces separating different regions.

All of the methods mentioned above, as well as the
method presented in this work, have in common that they
assume that equilibrium is established locally with regards
to, for example, phase fractions and phase compositions.
However, the new method does not rely on a continuous
matrix phase; rather it resembles a single-phase problem
with the phase having average kinetic properties and chem-
ical potentials corresponding, locally, to equilibrium. The
same numerical procedure is applied across the whole inte-
rior of the domain, i.e. without considering interfaces. The
full composition dependence of chemical potentials and
mobilities is taken into account.

A method that is quite similar to the one presented here
was developed by Engström [7], but it suffers from some
numerical difficulties. It has never been publicized,
although it is briefly mentioned in Ref. [3].

2. Simulation model

2.1. Basis of model

The basis of the simulation model used in this work has
been described in detail earlier [8,9], but for the conve-
nience of the reader it will be recapitulated. How this
model is modified so as to be applicable to multiphase mix-
tures is described in the following section.

The treatment is limited to one dimension and the molar
volume Vm is assumed to be constant. Only systems
without interstitial species will be considered; with a few
reasonable assumptions it is straightforward to include
interstitials in the model. The diffusion problem is solved
in the lattice-fixed frame of reference and it is assumed that
the local fraction of vacancies always corresponds to equi-
librium and that no pores are formed as a result of vacancy
annihilation.

With the present assumptions the volume- and number-
fixed frames of references are identical. The number-fixed
frame of reference is defined by the condition that the num-
ber of atoms on each side of a reference plane stays con-
stant. The velocity of an inert marker, fixed to the lattice,
relative to the number-fixed frame of reference is given by

v ¼ �V m

X
J k; ð1Þ

where Jk is the flux of species k in the lattice-fixed frame
of reference. This is generalized by introducing a time-
dependent spatial coordinate ~z defined by

d~z
dt
¼ v ¼ �V m

X
J k; ð2Þ

with the initial condition ~zðt ¼ 0Þ ¼ z, where z is the ordin-
ary time-independent spatial coordinate. For any given
time there thus exists a 1–1 mapping of ~z into z. In other
words, the fluxes are calculated in a lattice-fixed frame of
reference but by simultaneously solving Eq. (2) the result-
ing concentration fields are mapped to a number-fixed
frame of reference.

From absolute reaction rate theory arguments the fol-
lowing flux expression in the lattice-fixed frame of reference
was obtained [9]

J k ¼ �
MkRT
V mD~z

ffiffiffiffiffiffiffiffi
x1

kx2
k

q
2 sinh

Dlk

2RT

� �
; ð3Þ

where x1
k and x2

k denote the mole fraction of species k on
plane/source 1 and 2, respectively, Mk is the mobility of
species k, D~z is the distance between the centres of the
two planes/sources and Dlk is the difference in chemical
potential.

2.2. Homogenization modification of previously derived

model

The model as described above is applicable to one-phase
problems and to moving phase boundary problems, but it
cannot be applied to multiphase mixtures. However, by
simply assuming locally minimized Gibbs energy and
locally averaged kinetic properties it can be applied to a
range of different problems, including multiphase mixtures.
Locally minimized Gibbs energy means that the local phase
fractions, phase compositions, etc., correspond to the
equilibrium values given by the local composition. This is
often, but certainly not always, a good approximation if
the local microstructural length scale is small compared
to the global, or long-range, diffusion distance. How to
choose locally averaged kinetic properties is a more compli-
cated problem and is discussed in the next section. How-
ever, to emphasize these modifications Eq. (3) is rewritten
with lk replaced with ll.eq.

k and Mk replaced with M eff
k .

Superscript l.eq. means local equilibrium signifying that
the local chemical potential is obtained from the local min-
imum in Gibbs energy and eff stands for local effective
mobility:

J k ¼ �
M eff

k RT
V mD~z

ffiffiffiffiffiffiffiffi
x1

kx2
k

q
2 sinh

Dll.eq.
k

2RT

 !
; ð4Þ

x1
k and x2

k denote the local overall mole fraction regardless
of the number of phases present locally.

2.3. Calculating the ‘effective’ mobility M eff
k

Diffusive transport belongs to a general class of trans-
port properties, which among others include thermal con-
duction, electrical conduction, dielectric displacement and
magnetic induction. The common mathematical structure
of these phenomena is a linear relation between vector
fields:

J k ¼ �
X

LkiX i; ð5Þ

where Jk here stands for any type of flux, e.g. diffusion of
species, heat or electric charge, and Xi is a force, e.g. gradi-
ent of chemical potential, temperature or electric potential.
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The Lki are the appropriate materials descriptors, e.g. diffu-
sivity, thermal conductivity or electrical conductivity.

For these phenomena a variety of combining rules exist
for determining ‘effective’ transport properties in multi-
phase mixtures, from the transport properties in the indi-
vidual phases, the fraction of phases and sometimes also
from their geometrical distribution [10–14]. In addition,
the common mathematical structure of these constitutive
relationships suggests that combining rules developed for
one set of transport properties apply also to the others. It
is thus tempting to consult this literature in order to find
suitable combining rules, which will allow the M eff

k in Eq.
(4) to be calculated from the Mk of the individual phases.

Combining rules, as for example in Refs. [10–14], are
usually derived for fluxes which are described by a diagonal
L matrix. In that case the material descriptors reduce to a
scalar in an isotropic multiphase alloy. If correlation effects
are ignored, then the mobility matrix M also reduces to a
diagonal matrix in the isotropic case.

It is possible and many times useful to derive bounds.
The simplest examples are the Wiener bounds [15] derived
only on the basis of information about the fraction of the
various phases under consideration. The lower bound
comes from assuming a spatially uniform flux through each
volume element, i.e.

M eff
k ¼

X f i

Mi
k

� ��1

; ð6Þ

where fi is the volume fraction of phase i and Mi
k is the

mobility of species k in phase i. The upper bound is defined
from the assumption of a uniform force, in this case uni-
form chemical potential gradients:

M eff
k ¼

X
f iMi

k. ð7Þ

These bounds are attained in fibrous and lamellar struc-
tures and are often referred to as a series and parallel model
or the rule of mixtures and the inverse rule of mixtures.

As the Wiener bounds are rather far apart it is desirable
to derive closer bounds by making further assumptions as
made by Hashin and Shtrikman [16]. They used variational
methods in order to obtain bounds for the effective mag-
netic permeability of multiphase composite materials
assuming it to be, in a statistical sense, isotropic and homo-
geneous. If we apply their solution to a two-phase a + c
material, then we obtain the upper bound as

Mu
k ¼ Ma

k þ
f c

1
Mc

k�Ma
k
þ f a

3Ma
k

; ð8Þ

with Ma
k > Mc

k , which holds for Fe–Cr–Ni a/c alloys. The
geometry attained in this case is the ‘composite sphere
assemblage’; spheres of phase c and radius rc are coated
with shells of phase a and radius ra such that rc and ra en-
close the relative amounts fc and fa of the phases. All space
is filled with composite spheres, which requires a distribu-
tion of radii including infinitesimally small values. If the
spheres are interchanged so that spheres of phase a are
coated by phase c, then the effective mobility equals the
lower Hashin–Shtrikman bound, i.e.

M l
k ¼ Mc

k þ
f a

1
Ma

k�Mc
k
þ f c

3Mc
k

. ð9Þ

In the equations describing the bounds presented in Eqs.
(6)–(9) it is assumed that the same phase is continuous
throughout the whole interval even at very low fractions.
In reality this is not likely to be the case. Imagine a dilute
suspension of particles with high mobilities, dispersed in a
matrix with very low mobilities. The ‘effective’ mobilities
for this material will be very low, because it is controlled
by the slow mobilities in the matrix. When increasing the
volume fraction of the particles, the ‘effective’ mobilities
will increase somewhat, but still be very low, until a critical
volume fraction is reached where a continuous network of
particles can be formed throughout the material. This crit-
ical concentration is known as the percolation threshold,
and depends strongly on the phase geometries. Since the
material behaves very differently above and below the per-
colation threshold, it is of great importance to be able to
predict when it occurs. In general it is extremely difficult
to predict the percolation threshold in real multiphase
materials. For practical calculations one could use, for
example, Eq. (8) below some predefined volume fraction
of the low-mobility phase, and Eq. (9) above this fraction.
In the current work calculations have been performed
using both the upper and lower Hashin–Shtrikman bounds
for purposes of comparison. Results are also presented
from a simulation where a transition between the bounds
was postulated to occur (see Section 4.4).

2.4. Numerical details

The system under consideration is divided into a number
of initially equally sized slices; node points ~z0;~z1; . . . corre-
spond to the positions of the ‘walls’ between slices. D~z in
Eq. (4) is taken as the distance between centres of neigh-
bouring slices. The chemical potentials and mobilities in
each slice are calculated in each slice using the average
composition of slices as input. For each time step, the cou-
pled system of equations, given by Eqs. (2) and (4), yielding
the fluxes between all neighbouring slices and the displace-
ment of all node points is solved by an implicit procedure.
The nature of the model and the implementation ensures
that mass is conserved. Independently assessed thermody-
namic and kinetic data used in simulations were obtained
from the Thermo-Calc software [17].

3. Experimental

In order to validate the model the calculated results were
compared against experimental work previously performed
and published [18] by one of the authors. In this work five
different multiphase diffusion couples according to Table 1
were fabricated from the Fe–Cr–Ni alloys presented in



Table 2
Alloys (mass%)

Alloy Cr Ni

k2 12.5 4.9
k3 16.2 10.0
k5 24.3 6.9
k6 29.5 6.1
k7 40.0 29.4

Fig. 1. Diffusion paths for couples k2–k5, k5–k7 and k6–k7. The phase
diagram was calculated using Thermo-Calc [17].

Fig. 2. Diffusion path for couples k3–k7. The phase diagram was
calculated using Thermo-Calc [17].

Table 1
Diffusion couples

Couple Temperature (�C) Time (h) Phase

k3–k7 1200 200 c/c + a
k6–k7 1100 100 a/c + a
k2–k5 1100 200 c/a + c
k5–k7 1100 100 a + c/c + a
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Table 2. Details of the procedure of fabricating, annealing
and analysing these diffusion couples will not be repeated
here, as the interested reader can find this information in
Ref. [18].

The alloy compositions and the temperature used during
the diffusion anneals were selected in order to obtain
different types of microstructures in the couples, and conse-
quently different behaviours. All couples were encapsulated
in quartz tubes under near vacuum and given individual
diffusion anneals according to Table 1. In Table 1 the
phases initially present on each side of the original diffusion
interface are also indicated (the majority phase listed first).

Concentration profiles in the couples after diffusion
annealing were determined by electron microprobe (EMP)
measurements. Average concentrations in two-phase
regions were determined by EMP measurements performed
along lines at different distances from, but still parallel to,
the original diffusion interface. Measurements were done
both as one single line measurement, and by averaging
several point measurements made along such a line.

4. Results from simulations and comparisons with

experimental data

As an overview of the results obtained from simulations,
diffusion paths plotted in the corresponding ternary phase
diagrams for all diffusion couples are shown in Figs. 1 and
2. Micrographs reproduced from Ref. [18] showing the
microstructures of the diffusion couples after annealing
are shown in Figs. 3–6. In the micrographs, c appears light
and a dark.

4.1. Couple k3–k7

Results from simulations are presented in Figs. 7–9. This
couple, which is of the type c/c + a, exhibited no changes
in the number of phase regions after the diffusion anneal.
Experimentally it was observed that the two-phase region
receded approximately 90 lm, whereas the simulation
using the lower Hashin–Shtrikman bound showed a reces-
sion of about 50 lm. Here, as for couple k6–k7, use of the
upper Hashin–Shtrikman bound gave wrongly a prediction
of an advancing two-phase region. Consequently, also with
regards to the composition profiles the lower bound gave
the better prediction. In the micrograph it can also be seen
that some Kirkendall porosity formed on the ‘‘k3 side’’
during the anneal. We conclude that diffusion in alloy k7
is below the percolation threshold for diffusion in a to
dominate.

4.2. Couple k6–k7

Results from simulations are presented in Figs. 10–12.
The number of phase regions changed during the anneal
from [a/c + a] to [a/c/c + a], i.e. a single-phase c layer
formed. This layer was experimentally measured to be
�30 lm thick whereas the simulation using the lower
bound predicted a thickness of �20 lm. For the simula-
tion using the upper bound, no single-phase c layer was
formed.



Fig. 3. Microstructure of diffusion couples k3–k7 after anneal. Repro-
duced from Ref. [18] with permission from Scandinavian Journal of
Metallurgy and Blackwell Publishing.

Fig. 4. Microstructure of diffusion couples k6–k7 after anneal. Repro-
duced from Ref. [18] with permission from Scandinavian Journal of
Metallurgy and Blackwell Publishing.
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4.3. Couple k2–k5

Results from simulations are presented in Figs. 13–15.
For this couple no dramatic changes occurred. The a + c
region receded slightly, 10–20 lm. Also, the differences in
simulation results between the two bounds were relatively
small.

4.4. Couple k5–k7

Results from simulations are presented in Figs. 16–18.
The number of phase regions changed during the anneal
from [a + c/c + a] to [a + c/c/c + a], i.e. a single-phase c
layer formed between the two-phase regions. This layer
was experimentally measured to be �50 lm thick whereas
simulations using the lower and a mixed (see below) bound
predicted a thickness of �30 lm. Again, the simulation
using the upper bound gave no prediction of single c layer
formation.

As discussed above in Section 2.3, a reasonable approx-
imation would be to use the lower bound when the low-dif-
fusivity phase has the highest volume fraction and vice
versa. The dash–dot curves indicated as ‘mixed’ in Figs.
16–18 were obtained with this approximation in mind.
The effective mobility was calculated ad hoc using a hyper-
bolic function to obtain a smooth transition between the
bounds when the volume fraction of ferrite changes from
about 0.4 to about 0.6, i.e.

M eff
k ¼ M l

k þ
1

2
tanhð30f a � 15Þ þ 1½ � Mu

k �M l
k

� �
. ð10Þ

As can be seen in the figures, the results obtained using this
function are quite similar to those obtained using the lower
bound.

5. Possible alterations of the model

The model as described above is primarily applicable to
cases where the phases do not differ too much, e.g. when
only solution phases are considered. However, consider
for example the important case where carbides are dis-
persed in a ferritic or austenitic matrix; such a case has
been simulated successfully using the model described in
Ref. [2] (see Ref. [19]). It is clear from the geometric inter-
pretation of the Hashin–Shtrikman bounds that the lower
bound will yield far too small a flux; a sphere of matrix
phase coated with a thin layer of carbide. At the same time
the flux obtained from the upper bound will be too large.
This is because the overall carbon content would enter
the flux expression whereas in reality it is the transport in
the matrix and the carbon solubility in the matrix that gov-
ern the long-range carbon diffusion, which is precisely the



Fig. 6. Microstructure of diffusion couples k5–k7 after anneal. Repro-
duced from Ref. [18] with permission from Scandinavian Journal of
Metallurgy and Blackwell Publishing.

Fig. 5. Microstructure of diffusion couples k2–k5 after anneal. Repro-
duced from Ref. [18] with permission from Scandinavian Journal of
Metallurgy and Blackwell Publishing.

Fig. 7. Cr mole fraction profile for diffusion couples k3–k7.
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assumption made in the model of Ref. [2]. Possible altera-
tions of the model presented above will now be described.
The basic assumption of local equilibrium will be retained,
but two different ways of estimating the local kinetic prop-
erties will be suggested.

A first alteration is to view the content of species in the
phases present as inherent parts of the kinetic properties.
Taking this view it is the product Mi

kxi
k, where i denotes

the phase, that should be considered and the effective
kinetic property to be evaluated is [Mkxk]eff. The flux
expression would then be

J k ¼ �
RT

V mD~z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mkxk½ �eff1 Mkxk½ �eff2

q
2 sinh

Dll.eq.
k

2RT

 !
. ð11Þ

Another, more complex, possibility is to consider all com-
binations of pairwise phase interactions. This yields the fol-
lowing expression for the flux:

J k ¼ �
X

i

X
j

f i1f j2 Mij
k RT

V mD~z

ffiffiffiffiffiffiffiffiffiffi
xi1

k xj2
k

q
2 sinh

Dll.eq.
k

2RT

 !
; ð12Þ

where fi1 and fj2 are the fractions of phase i and j on sources
1 and 2, respectively. The mobilities Mij

k can, as before, be
approximated using the Hashin–Shtrikman bounds. Note
that
X
i

X
j

f if j ¼ 1.

Eqs. (4), (11) and (12) are complementary to each other.
Eq. (4) is the computationally cheapest. Eq. (11) is compu-
tationally slightly more expensive as all phase compositions
must be evaluated.



Fig. 8. Ni mole fraction profile for diffusion couples k3–k7.

Fig. 9. a mole fraction profile for diffusion couples k3–k7.

Fig. 10. Cr mole fraction profile for diffusion couples k6–k7.

Fig. 11. Ni mole fraction profile for diffusion couples k6–k7.

Fig. 12. a mole fraction profile for diffusion couples k6–k7.

Fig. 13. Cr mole fraction profile for diffusion couples k2–k5.
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Fig. 14. Ni mole fraction profile for diffusion couples k2–k5.

Fig. 15. a Mole fraction profile for diffusion couples k2–k5.

Fig. 16. Cr mole fraction profile for diffusion couples k5–k7.

Fig. 17. Ni mole fraction profile for diffusion couples k5–k7.

Fig. 18. a Mole fraction profile for diffusion couples k5–k7.
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Eq. (12) is less dependent on which bound to use than
the other two; an inherent assumption in Eq. (12) is that
all phases with fi > 0 are continuous.

6. Discussion

The simulation results obtained from the new model are
highly encouraging. Using the lower Hashin–Shtrikman
bound, predictions regarding the phase regions were qualita-
tively correct for all investigated cases. Regarding the com-
position profiles there was also a satisfactory quantitative
agreement with experimental data. However, there is of
course the question of predicting which bound to use. The
choice of bound is of course only relevant for the two-phase
regions. Of the two-phase alloys one (k7) has c as the major-
ity phase and for the other (k5) it is a. For diffusion in k7 the
lower bound should thus be the better choice and vice versa.
For the overall progress of diffusion in the couples it is the
region with the lowest (effective) diffusivity that will control
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the process. Only for couple k2–k5 would it therefore have
been expected that the upper bound should have been the
better choice. However, the heat treatment time for couple
k2–k5 was insufficient to separate conclusively the bounds.

Numerically, the success of the model relies on the use of
‘slices’ and chemical potential gradients rather than dividing
the domain into phase regions and working with concentra-
tion gradients; this ensures that singular gradients are
entirely avoided. Some small ‘fluctuations’ can be seen in
some of the curves. The nature of these is not fully under-
stood. The numerical method used is unconditionally stable.
Simulations using different number of node points and dif-
fering degrees of implicity gave roughly the same results.

The good agreement with experimental data confirms
that the assumption of local equilibrium is sound for the
system considered. The microstructural evolution is con-
trolled by long-range diffusion.

A case for which the assumption is not expected to hold
is where both dissolution and precipitation of stoichiome-
tric low-diffusivity phases occur, such as for carbides and
nitrides; this was the conclusion in a study of nitriding of
tool steels [21] and a related example is the ‘coring’ phe-
nomena during sintering of cemented carbides.
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