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Diffusion in interstitial compounds with thermal and stoichiometric defects
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The ordinary flux equation for diffusion, which considers the composition gradient as the driving
force, is seldom of much use in studying closely stoichiometric phases. Depending on the defect
structure it would instead be profitable to use an appropriate function of the activity. Such functions
will now be derived and it will be shown how the operating defect mechanism of diffusion can be
identified from information on the variation of the activity inside a phase during diffusion. However,
it is usually very difficult to measure the activity profile inside a phase. It will be shown how it can
be obtained by combining results from several experiments. The method will be used to analyze
experimental information on the formation of surface layers of Fe4N and Fe3C. © 2005 American
Institute of Physics. �DOI: 10.1063/1.1999833�
I. INTRODUCTION

Many compounds have a very narrow range of compo-
sition and are often treated as stoichiometric. However, such
compounds may form as a surface layer on a metallic mate-
rial in a reactive atmosphere and the thickening of the layer
occurs by diffusion through the compound itself in spite of
the small composition gradient. It is then a problem how to
analyze such information on diffusion. This problem will
now be discussed with particular reference to interstitial
compounds where the nonmetallic atoms do not dissolve in
the main lattice but in lattice sites that are regarded as inter-
stitial sites although their sublattice may be almost com-
pletely filled. It may even happen that there is an excess of
nonmetallic atoms that are dissolved in a new interstitial sub-
lattice. The hypostoichiometric case may be represented by
the formula Am�B ,Va�1 and the hyperstoichiometric case by
AmB1�Va ,B�n. Diffusion of the nonmetal occurs by means of
defects, in the first case by vacancies in the first interstitial
sublattice and in the second case by an excess of the non-
metal being dissolved in the new interstitial sublattice. It will
be demonstrated that information on the diffusivity can give
information on the defect structure, which may otherwise be
difficult to study. The diffusion of the metallic component
will be neglected.

If there is only one kind of defects then their number is
directly related to the deviation from the ideal stoichiometric
composition and they may be regarded as stoichiometric de-
fects. If two kinds are present, they can exist even at the
stoichiometric composition and their numbers will vary with
the temperature. They may be called thermal defects. It will
be shown that such considerations are important for the
method of analyzing data.

Diffusion in oxides has been studied extensively and the
theoretical basis was outlined by Wagner.1 There have not
been as many attempts to evaluate diffusion coefficients from
the growth of surface layers of carbides and nitrides although
such information should be easier to analyze than informa-

a�
Electronic mail: lars@mse.kth.se

0021-8979/2005/98�5�/053511/6/$22.50 98, 05351

Downloaded 04 Jun 2007 to 129.6.180.66. Redistribution subject to 
tion on oxides because they are usually assumed not to be
ionized. In an early study of cementite, which has the ideal
composition Fe3C, it was simply assumed that the diffusional
flux should be proportional to the activity difference.2 In a
later study one instead used the logarithm of activity3 by
reference to a study of Fe4N.4 However, in the latter study
other alternatives were also discussed. Typical of these ex-
perimental studies is that the activity on the inner side of the
surface layer is controlled by a two-phase equilibrium and is
thus constant for a binary system at any given temperature.
The only experimental variable is the activity in the sur-
rounding atmosphere. These activities will be denoted as aB

0

and aB
atm in the following.

II. FLUX EQUATIONS

Diffusion of B in a binary A-B solution usually occurs
by a vacancy mechanism and it is common to apply the
following type of flux equation for one-dimensional diffu-
sion:

JB = − yByVa
MBVa

Vm

d��B − �Va�
d�

= − yByVa
MBVaRT

Vm

d ln aB

d�
,

�1�

where MBVa is the mobility, yi represents the site fractions in
the sublattice where diffusion takes place, � is the length
coordinate in the direction of diffusion, and Vm is the volume
containing one mole of sites on that sublattice. For a simple
substitutional solution yi is identical to the ordinary mole
fraction. Finally, aB is the activity of B. It should be noted
that the activity has here been introduced by considering the
potential of vacancies as zero in the case of thermal vacan-
cies, which is based on the assumption that their number is
determined by equilibrium with a surrounding vacuum,
sometimes called thermal equilibrium. In the case of sto-
ichiometric vacancies, the B activity is defined from the dif-
ference in chemical potentials and the result for Eq. �1� will
be the same. However, the final result will be quite different.

�It should also be noticed that the flux must be constant
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everywhere in a completely stoichiometric phase because
otherwise the composition would change.�

In a phase where the occupancies only vary in a sublat-
tice containing B atoms and vacancies, the B activity is pri-
marily proportional to the site fraction of B and inversely
proportional to the site fraction of vacancies. In a hyposto-
ichiometric compound the predominant defects are the va-
cancies on the interstitial sublattice and the site fraction of B
can be approximated by 1. The B activity is thus inversely
proportional to the site fraction of vacancies and using an
activity coefficient fB� we write aB= fB� /yVa� . The prime iden-
tifies quantities in this interstitial sublattice. Assuming that fB�
is constant we get aByVa= fB� =aB

0 yVa�0, where the superscript
“0” identifies quantities on the inner side of the surface layer
of the compound and they are fixed by the presence of the
other phase. Insertion in Eq. �1�, integration over the surface
layer, and use of the fact that the flux is constant in the layer
yield

JB = −
yVa�0aB

0

aB

MBVa� RT

Vm�

d ln aB

d�

= −
yVa�0aB

0

aB

MBVa� RT

Vm�

daB

aBd�

=
aB

0 KB�

lVm�
� 1

aB
0 −

1

aB
atm� =

KB�

lVm�
�1 −

aB
0

aB
atm� , �2�

where l is the thickness of the surface layer and KB�
=yVa�0MBVa� RT. In the hyperstoichiometric case the predomi-
nant defects are B atoms in a new interstitial sublattice. The
site fraction of vacancies is there close to 1 and the B activity
is proportional to the site fraction of B. Using a new activity
coefficient through aB= fB�yB� and assuming that fB� is also
constant, we get aB/yB� = fB� =aB

0 /yB�
0. The double prime iden-

tifies quantities in the new interstitial sublattice. Insertion in
Eq. �1� and integration over the surface layer yield

JB = −
yB�

0aB

aB
0

MBVa� RT

Vm�

d ln aB

d�

= −
yB�

0aB
0

aB
0

MBVa� RT

Vm�

daB

aBd�

=
KB�

lVm� aB
0 �aB

atm − aB
0 � =

KB�

lVm�
�aB

atm

aB
0 − 1� , �3�

where KB� =yB�
0MBVa� RT. It should be noticed that Vm� will

differ from Vm� if the two interstitial sublattices have different
numbers of sites. If the new interstitial sublattice has n times
as many sites as the first one, then Vm� =Vm� /n.

As already emphasized, if there are defects in a quite
stoichiometric compound, there must be two balancing kinds
and in the present case we get yB� =yVa� /n. Their numbers are
determined by thermodynamic equilibrium and their site
fractions will be identified with the superscript “th” for ther-
mal. At sufficiently small deviations from stoichiometry the
defects with a stoichiometric origin will be relatively few
and the defects with a thermodynamic origin will predomi-
nate. The total number of vacancies on the first interstitial

sublattice and of B atoms on the second interstitial sublattice
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will then be rather independent of composition and the B
activity. We here have to consider diffusion in both intersti-
tial sublattices and the flux equation will be the sum of the
contributions from the two. By approximating yB and yVa as
1 we get by applying Eq. �1� twice,

JB = − yVa�thMBVa�

Vm�

d��B − �Va�
d�

− yB�
thMBVa�

Vm�

d��B − �Va�
d�

=
KB

ln

lVm�
ln

aB
atm

aB
0 , �4a�

KB
ln = yVa�thMBVa� RT + yB�

thMBVa� RTVm� /Vm�

= yVa�th�MBVa� + MBVa� �RT , �4b�

where KB
ln is often regarded as the self-diffusion

coefficient3,6,8 but it should be emphasized that this name is
not justified for KB� in Eq. �2� or KB� in Eq. �3� which can be
illustrated by the fact that they contain yVa�0 or yB�

0 which are
not only functions of the properties of the compound itself
but also of the other phase in the two-phase equilibrium.
That feature could be removed by instead introducing a fixed
state of reference for the activity of B but that would be an
arbitrary choice and affect the value of KB

ln. In contrast, yVa�th

in Eq. �4b� only depends on the properties of the compound
itself.

For larger deviations from stoichiometry there will be a
transition on each side of the ideal composition. Starting
from hypostoichiometric compositions, one should first con-
sider the gradient in −1/aB obtained from Eq. �2�, then a
transition to ln aB from Eq. �4� and finally a transition to aB

from Eq. �3�. At what compositions the transitions occur de-
pend on the activation energy of the thermal defects. It
would thus seem possible to obtain some information on that
activation energy by studying where the transitions occur.

When studying the formation of an Fe4N layer by treat-
ing iron specimens in a nitriding atmosphere, Schwerdtfeger
et al.4 used the gradient of ln aB as the driving force with
reference to Wagner.1 However, in a final section, and evi-
dently inspired by Darken, they discussed −1/aB and aB,
which appear in Eqs. �2� and �3�, and they proposed that
there should be a transition region where one should consider
diffusion in both interstitial sublattices. In principle, they
simply added the results of Eqs. �2� and �3� obtaining

JB · Vm� l = − k1�aB
atm − aB

0 � − k2� 1

aB
0 −

1

aB
atm� . �5�

They did not realize that the result would be quite dif-
ferent in the middle of the transition, i.e., close to the sto-
ichiometric composition, where Eq. �4� applies. Of course, it
is still possible that their equation could be of practical use.
To test that possibility, Eq. �5� was applied to various values
of k1 and k2 and compared with Eq. �4�. It should be realized
that we only wanted to compare the shapes of curves. The
absolute values of k1 and k2 are thus of no importance and it
was sufficient to vary their ratio. This was accomplished with
a parameter F obtained by expressing the ratio as F / �1−F�,
see Fig. 1. It is evident that there is no F value, which would

yield a shape similar to the curve for thermal defects accord-
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ing to Eq. �4�, marked ln�aB/aB
0 � in Fig. 1. Furthermore,

Schwerdtfeger et al. proposed that the term with the largest k
value would represent the dominating diffusion mechanism.
However, they neglected to consider the effect of the choice
of reference for the activity. The ratio of k1 and k2 will
change dramatically if the reference is changed and it is thus
evident that Eq. �5� has no physical meaning. In comparison,
it should be noted that the results of Eqs. �2�–�4� are inde-
pendent of the choice of reference.

It may be more realistic to use separate equations for the
two transitions mentioned above. They would take the fol-
lowing forms where 0�F�1:

JB · Vm� l = − K��1 − F�ln�aatm/a0� + F�1 − a0/aatm�� , �6�

JB · Vm� l = − K��1 − F�ln�aatm/a0� + F�aatm/a0 − 1�� . �7�

At F=0 both equations will reduce to Eq. �4� for thermal
defects and should hold sufficiently close to the stoichio-
metric composition. In Eq. �6� F�0 indicates that there is an
effect of hypostoichiometric vacancies on the first interstitial
sublattice and in Eq. �7� it indicates that there is an effect of
hyperstoichiometric atoms on the new interstitial sublattice.

III. APPLICATION TO EXPERIMENTAL
INFORMATION

When applying Eqs. �2�–�4� to the experimental data, we
may regard 1−aB

0 /aB, ln�aB/aB
0 �, and aB/aB

0 −1 as dimen-
sionless diffusion potentials. The way these flux equations
are formulated, the rate constant as obtained from the experi-
ments should be proportional to the particular diffusion po-
tential used in that flux equation, if the flux equation is based
on the mechanism of diffusion that actually operates. In prin-
ciple, the dominating diffusion mechanism could be identi-
fied by testing what potential varies most linearly through the
growing layer of the compound because the flux must be
almost constant if the composition of the layer is almost
constant. However, as mentioned, it is not possible or at least

FIG. 1. Comparison of the dimensionless diffusion potential F�aB
atm−aB

0 �
+ �1−F��1−aB

0 /aB
atm� according to Eq. �5� with various F values and a di-

mensionless diffusion potential of ln�aB
atm/aB

0 � according to Eq. �4�.
extremely difficult to obtain information on the activity by
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studying the situation inside the growing layer if the devia-
tion from stoichiometry is very small. On the other hand,
there is another experimental possibility.

Under the quasi-steady-state approximation one may
treat the flux JB as constant through the whole of the growing
layer at any time. This approximation is particularly justified
in the present case where the phase is almost stoichiometric
and can hardly vary in composition. Furthermore, if the re-
action is diffusion controlled, the growth is parabolic, l2=kt,
and JB is proportional to k / l. Two experiments with different
aB

atm, say �aB
atm�1� �aB

atm�2, would yield different rate con-
stants, k1 and k2, respectively. One can then find two differ-
ent times, t* and t**, where the thicknesses of the surface
layers are related by l1

* / l2
**=k1 /k2. As the flux JB is propor-

tional to k / l, it must be the same in both experiments. The
activity as function of distance in the layer in the second
experiment should then be identical to part of the corre-
sponding activity profile in the first experiment because they
both end at the same activity aB

0 corresponding to the two-
phase equilibrium at the temperature and they both have the
same slope because the flux is the same. The results of both
experiments could thus be represented by a single curve. The
curve for the experiment with the largest aB

atm would extend
from that value and to aB

0 at the phase interface. The same
curve would apply to the other experiment but only from the
lower value of aB

atm. Furthermore, since k1 / ll
*=k2 / l2

**, when
this comparison is made, one could represent l by k in this
plot. Combining experiments with different values of aB

atm

one could thus study how the activity varies through the
surface layer during the experiments. Of course, the same
would apply to plots of any function of aB. It is thus possible
to test various functions of aB. The function yielding a curve
most similar to a straight line may be the operating diffusion
potential. This method will now be used.

Three different functions of the N activity are plotted
versus the parabolic rate constant in Fig. 2. The data are from
Schwerdtfeger et al.4 who measured the rate constant for the

FIG. 2. Different dimensionless diffusion potentials in Fe4N calculated from
the experimental N activity in the atmosphere at 781 K by Schwerdtfeger et
al. �see Ref. 4� and plotted vs the rate constant reported. The curves where
drawn manually to reasonable representation of the data for each kind of
potential.
formation of a surface layer of Fe4N on iron specimens in an
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NH3/H2 atmosphere at 781 K. The N activity was defined as
PNH3

/ �PH2
�3/2 atm−1/2 and the origin is a fixed point repre-

senting the equilibrium on the inner side of the layer where
aN=aN

0 . All the three potentials are thus zero at that point and
an experiment with aN=aN

0 would yield a rate constant k=0
because no Fe4N layer would form. The values of ln�aN/aN

0 �
show an almost linear dependence and a straight line would
agree with all the experimental values within the uncertainty
listed by the authors. This result would support the conclu-
sion that the diffusion of N in Fe4N occurs mainly by ther-
mal vacancies. On the other hand, a closer examination re-
veals that the values may indicate a slightly negative
curvature. An attempt was made to analyze this and Eq. �7�
was applied because Fig. 2 demonstrates that the potential
aN/aN

0 −1 yields a positive curvature, which could be used
for compensating a slightly negative curvature of ln�aN/aN

0 �.
Various F values were tested and Fig. 3 shows that F=0.15
gives an almost perfect fit. Admittedly, the theoretical line
�the straight dashed line� does not fall on the first experimen-
tal point to the left but it does fall within its range of uncer-
tainty given by the authors and indicated in the diagram. It is
thus tempting to accept this line and to propose that there are
some hyperstoichiometric N atoms in a new interstitial sub-
lattice in addition to the thermal vacancies. This is contrary
to measurements of the composition by Wriedt5 showing a N
deficit in Fe4N specimens and that was later supported by
Simkovich.6 We can offer no explanation for this discrep-
ancy.

Simkovich6 also analyzed kinetic data on the formation
of Fe4N in spherical carbonyl iron powder and could fit the
data from 773 K with Eq. �5� when using k1=0.65 and k2

=2.16, i.e., k1 /k2=0.3. He concluded that the diffusion of N
occurs in both interstitial sublattices. He made a similar
analysis of data from 823 K but needed two straight lines
and concluded that the diffusion primarily occurs on the first
interstitial sublattice for low N contents but on both for
higher contents. On the other hand, it could be argued that
Eq. �5� was not capable of representing data for a transition
from one case to the other with one straight line which was
its purpose. Furthermore, as already explained, the ratio of k1

FIG. 3. Data from Fig. 2 plotted using Eq. �7� with two different F values.
to k2 in Eq. �5� is very sensitive to the choice of reference for
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the activity. In his paper he defined the N activity as PN
1/2 but,

when using Eq. �5�, he introduced a “modified activity”
which was lower by a factor of about 200. If the first kind of
activity had been used in Eq. �5� the result for 773 K would
have been k1 /k2=24 000 instead of 0.3. The conclusion
would have been quite different.

Figures 4 and 5 show the data for the formation of Fe3C
as surface layers in fine iron powder from Ozturk et al.3,7 and
in pieces of iron from Schneider et al.8 In Fig. 4 the results
from Ozturk et al. are not easy to interpret due to experimen-
tal scatter. The data plotted as aC/aC

0 −1 are represented by a
straight line because the scatter makes it impossible to see
whether to use a positive or negative curvature. This straight
line would imply a predominance of hyperstoichiometric C
defects. The data plotted as ln�aC/aC

0 � indicate a slightly
negative curvature and that could be taken as an indication
that thermal defects predominate and hyperstoichiometric C

FIG. 4. Different dimensionless diffusion potentials in Fe3C calculated from
the experimental C activity in the atmosphere at 723 K by Ozturk et al. �see
Ref. 3 and 7� and plotted vs the rate constant reported. The curves where
drawn manually to reasonable representation of the data for each kind of
potential.

FIG. 5. Different dimensionless diffusion potentials in Fe3C calculated from
the experimental C activity in the atmosphere at 773 K by Ozturk et al. �see
Ref. 8� and plotted vs the rate constant reported. The curves where drawn

manually to reasonable representation of the data for each kind of potential.

AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



053511-5 Hillert, Höglund, and Ågren J. Appl. Phys. 98, 053511 �2005�
defects only play a minor role. However, it should be noted
that for low values of aC/aC

0 all three equations predict a
linear relationship and it is thus essential to use a sufficiently
wide range of values of aC

atm/aC
0 in order to identify the pre-

dominant diffusion mechanism. The information from Oz-
turk et al. has a maximum of 20 for the C activity, which
seems to give a range of activity that was too narrow.
Schneider et al.8 recently extended the range of C activity to
100 and Fig. 5 indicates that only ln�aC/aC

0 � does not yield a
strong curvature. The last point for aC/aC

0 −1 fell well above
the diagram but actually showed a very strong positive cur-
vature. It may be concluded that diffusion by thermal defects
predominate in Fe3C.

IV. EVALUATION OF SELF-DIFFUSION COEFFICIENT

The above inspection of the experimental data indicates
that the experimental information is rarely accurate enough
and rarely covers a sufficiently wide range of activities to
allow the diffusion mechanism to be identified with any cer-
tainty. It would thus seem that for practical purposes one
could often apply any one of the three alternative flux equa-
tions. It seems reasonable to select one of them for general
use and Eq. �4� will now be recommended and, as discussed
in connection with Eq. �4�, it has the advantaged that its rate
constant KB

ln can be regarded as the self-diffusion coefficient,
DB

* . This was done in the cited works on Fe4N and Fe3C,
where the self-diffusion coefficient was calculated from the
parabolic rate constant in l2=kt by using the material balance
at the inner side of the growing layer of the compound. Ne-
glecting the diffusion into the metallic interior of the speci-
mens, which may be justified in the case of bcc Fe with a
very low solubility of N and C, we get

dl

dt
·

1

Vm�
= JB. �8�

It should be emphasized that with its definition Vm� is the
volume containing one mole of B for a stoichiometric com-
pound. Insertion of the parabolic growth law and Eq. �4a�
into Eq. �8� yield

k

2lVm�
=

KB
ln ln�aB

atm/aB
0 �

lVm�
, �9�

KB
ln = 0.5k/ln�aB

atm/aB
0 � . �10�

The results on Fe3C reported in the literature are summarized
in Table I. Very similar values can be obtained by evaluating
k / ln�aB

atm/aB
0 � from the slope of a straight line through the

TABLE I. Carbon self-diffusivity in Fe3C according to different sources.

Source Temp. �K� DC
* �m2 s−1�

Ozturk et al.a 723 2.85�10−19

Schneider et al.b 773 5.57�10−18

Borgenstam et al.c 1138 1.2�10−14

aReference 3.
bReference 8.
cReference 9.
data, including the origin, in Fig. 4 or 5. However, as already
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mentioned, Eq. �10� is based on the neglect of the diffusion
into the metallic interior of the specimens. That may be a
rather good approximation in the present case because the
interior consists of bcc Fe and the solubilities of N and C in
bcc Fe are low. Nevertheless, a numerical procedure was
now applied in order to take that diffusion into account using
the DICTRA software package9 in combination with the simu-
lation software package MATLAB �Ref. 10� by means of a
developed programing interface.11 Then it was also possible
to simultaneously optimize DC

* and the individual incubation
times for each set of experiments in a single optimization
procedure. The experimental information indicates that there
was an incubation time before the growth of the present Fe3C
layer started. That was accepted in the previous assessments
as well as in the new one. The incubation time may be re-
lated to the finite rate of surface reactions as well as the time
for spreading of Fe3C over the metal surface to form a ho-
mogeneous layer. In any case, through the application of Eq.
�4� it was assumed that the growth is parabolic once it gets
started.

The assessment yielded DC
* =4.43�10−18 m2 s−1 at

773 K which was just a little lower than the value given by
Schneider et al. The fit to the experimental data is shown by
the full lines in Fig. 6. There is a discrepancy of less than
15%, which is not serious for a diffusion coefficient. The
reason will soon be discussed. In order to test that the diffu-
sion into the bcc Fe phase in the interior is not important, the
optimization was repeated with the diffusivity of C in bcc Fe
set to zero. Practically the same result was obtained.

The Arrhenius plot in Fig. 7 shows all the values of DC
* .

The open square represents the result of the optimization. A
straight line through the points from Ozturk et al. and
Schneider et al. would give a surprisingly high activation
energy and frequency factor. It seems that both points should
not be accepted. Rather than applying a least-squares fitting
of a straight line to all the values, it was decided to trust the

FIG. 6. The growth of Fe3C as �mass-gain/surface area� �see Ref. 2� accord-
ing to Schneider et al. �see Ref. 8� plotted as function of time for three
different C activities in the atmosphere at 773 K. The solid lines are calcu-
lated from Eq. �4� for diffusion by thermal defects. The dashed lines were
obtained from Eq. �7� and indicate some contribution from hyperstoichio-
metric C atoms.
straight line between the value from experimental informa-

AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



053511-6 Hillert, Höglund, and Ågren J. Appl. Phys. 98, 053511 �2005�
tion from Schneider et al. at 773 K and Hillert and Sharp’s
value from 1138 K. It gave the result DC

* =1.4�10−7

�exp�−154 000/RT� m2 s−1. The frequency factor seems
reasonable because it should be in the order ��2, � being the
phonon frequency �about 1013 s−1� and � being the jump dis-
tance �about 0.3–1 nm�, which would yield a value of about
10−7 m2 s−1. An argument for trusting the information from
Schneider et al. rather than from Ozturk et al. is that the
latter workers used iron powder with less controlled shape
and size and so fine that there would be complete carburiza-
tion within rather short times.

In connection with Fig. 5 it was mentioned that the data
from Schneider et al. give an indication that hyperstoichio-
metric C atoms contribute to the diffusivity. This is again
indicated by Fig. 7 where the full line for aC

atm=100 falls
below the data points and the full line for aC

atm=12 falls
above those data points. In order to evaluate the possible role
of hyperstoichiometric C atoms Eq. �7� was applied and F
was used as a adjustable parameter together with all the pre-
vious ones. The result was F=0.03 and the dashed lines in
Fig. 6 demonstrate the excellent fit. This may be taken as a
strong indication that hyperstoichiometric C atoms actually
contribute to the diffusivity but their effect is relatively
small.

V. SUMMARY

The purpose of the present study was to demonstrate the
importance of various kinds of defects for the diffusivity in
closely stoichiometric phases. Different defect structures
yield different flux equations and the importance to distin-
guish between stoichiometric and thermal defects has been

FIG. 7. Self-diffusivity of C in Fe3C according to different sources. The
filled symbols represent values from the literature. The open square is from
new assessment.
demonstrated. Three different cases have been considered
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and they yield different functions of the activity as the driv-
ing force for diffusion. It is shown how the nature of the
operating defect can be tested by examining what function of
the activity shows the most linear variation through the
growing surface layer of a stoichiometric phase.

Experimental measurements of an activity from inside a
phase are rarely reported and for a stoichiometric phase it
cannot be calculated from the composition profile measured
after the experiment. It is now shown how information on the
activity profile during diffusion through a surface layer can
be obtained by combining information on the parabolic rate
constant evaluated in a series of experiments using different
activities in the surrounding atmosphere.

Such information is available for the formation of sur-
face layers of Fe4N and Fe3C. That information has now
been successfully analyzed and a previous analysis was criti-
cized. It is demonstrated that a successful test requires rather
accurate information from a sufficiently wide range of activi-
ties.

From a practical point of view it seems that the choice of
mechanism may rarely be very important for the representa-
tion of the diffusivity. An equation based on thermal defects
is recommended for more general use in less ambitious stud-
ies. It predicts that the flux is proportional to the gradient of
ln aB and the rate constant, evaluated with this model, can be
identified with the self-diffusion coefficient. It was evaluated
for Fe3C using that model and the value was compared with
previous evaluations. The temperature dependence was
evaluated to DC

* =1.4�10−7 exp�−154 000/RT� m2/s.
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