

New EAM potential for the Ni-Al system and Application to the martensitic transformation in B2-NiAl

G. P. Pun and Y. Mishin

Department of Physics George Mason University

Supported by NASA

Development a new Ni-Al potential

Motivation

Some of the existing potentials for the Ni-Al system:

- Voter and Chen (MRS Proc., 1987)
- Foiles and Daw (JRM, 1987)
- "B2-potential" (Phys. Rev. B, 2002)
 - <u>Strengths</u>: Accurate fit to phase stability, point defect, GSF's and many other properties of B2-NiAI.
 - Weaknesses: less accurate for L1₂-Ni₃AI. Poor quality of the pure Ni and AI potentials
- "Ni₃Al-potential" (Acta Mater., 2004)
 - Strengths: excellent fit to Ni₃Al properties. Reproduces phase stability and the Ni-Al phase diagram.
 - Weaknesses: Less accurate for B2-NiAI. The pure Ni and AI potentials are accurate but AI is different from the widely used "AI-99"

Goals of the potential development

- Cross-fit our most favorite potentials "AI-99" and "Ni-04"
- Make it applicable to NiAl particles in Al matrix
- Further improve phase stability, with nearly accurate fits for both the B2 and L1₂ phases
- Check is the new potential will automatically reproduce the B2-L1₀ martensitic transformation

Approach:

- Use a larger database (experimental and *ab initio*) and improved fitting/testing methodologies
- Extensive testing for properties, especially the martensitic transformation

Fitting and testing procedures

Database

Experimental properties:

Lattice parameter, cohesive energy and elastic constants of B2-NiAI

Ab initio data:

Formation energies of several stable or unstable intermetallic compounds across the entire composition range

Optimization

- Minimization of mean-squared deviation from target properties. The weights control the priority of properties
- Simulated annealing by the simplex method

Potential functions

Pair-interaction functions of the Ni-Al potentials shown in the effective pair format.

Properties of B2-NiAl

Lattice properties

	Experiment	EAM (present)	"B2-NiAl"	
a ₀ (Å)	2.88	2.8320	2.86	
E _f (eV)	-0.70	-0.6059	-0.56	←
E ₀ (eV/atom)	-4.50	-4.5109	-4.47	←
c ₁₁ (GPa)	199	191	200	├
c ₁₂ (GPa)	137	143	140	
c ₄₄ (GPa)	116	121	120	1

Surfaces and interfaces

	Experiment	Ab initio	EAM	"B2-NiAl"]
			(present)		
Surface					
(100)		2.85, 2.75	2.12	1.67	←
(110)		2.05, 1.87, 1.79, 1.37	1.89	1.25	←
(111)			2.20	1.63	←
APB					
(110)	>0.50	0.88, 0.81	0.65	0.55	┝
(211)	>0.75	0.89, 0.99	0.73	0.72]

Phonon frequencies in B2-NiAl

Dispersion relations

Thermal expansion of B2-NiAl

- Monte-Carlo method
- Thermal expansion relative to room temperature
- Significant improvement relative to the "B2-potential" (without fitting)

Properties of Ni₃Al

Phonon frequencies (THz)

- Improved phonon frequencies
- Reasonable elastic constants

Deformation paths between structures

Summary for the Ni-Al potential

- Reproduces many properties of B2-NiAl and L1₂-Ni₃Al in better agreement with experimental and *ab initio* data than previous potentials for the Ni-Al system
- Demonstrates good "transferability" to various configurations and chemical compositions
- Should be suitable for simulations of mechanical properties
- The end-members are the "Ni-04" and "AI-99" potentials

Investigation of the martensitic transformation in Ni-Al shapememory alloys

NiAl shape memory alloys: background

- Shape memory effect in Ni-rich Ni_xAl_{1-x} alloys (x = 0.60-0.64) was discovered in the early 1970s.
- The shape memory effect is explained by a martensitic phase transformation B2 → L1₀. The transformation does not require any diffusion and occurs at low temperatures.
- The martensitic structure usually contains multiple twins and stacking faults. The stacking faults can form long-period ordered structures such as 7M.
- The transformation is accompanied by a significant hysteresis.
- The martensite-start (M_s) and austenite-finish (A_f) temperatures, as well as the martensite structure depend sensitively on the chemical composition, cooling/heating rate, the microstructure (grain boundaries, dislocations, etc.) and other factors.
- Annealed martensite may contain ordered precipitates of Ni₅Al₃ and/or Ni₃Al.
- Martensitic transformation at the crack tip in B2-NiAI was found experimentally and by simulations.

Where is it on the phase diagram?

Atomistic simulations of the NiAl martensite: Status of the field

- Clapp and co-workers (1990s) were the first to study this transformation, focusing on the effect of grain boundaries, surfaces and other defects. Used the Voter-Chen Ni-AI potential (1987), which unfortunately incorrectly predicts L1₀ (not B2) to be the ground state for the 50:50 composition.
- Lazarev et al. (2004, 2005) studied the transformation using the potential of Farkas et al. (1995) who refitted the Voter-Chen potential to give the correct ground state. Examined the effects of composition, stresses and defects.
- Guo et al. (2007) simulated crack growth in B2-NiAI and found the martensitic transformation at the crack tip. Used the Farkas potential.
- Many authors (e.g. Ackland, Elliott, Van der Ven) published excellent studies of martensitic transformations in other systems.

Crystallography of the B2-L1₀ transformation

[001]

 $c/a = \sqrt{2/3}$

Bain mechanism: B2 ⋀ \bigcirc С L1₀ Top view а

(110)_{B2}

{111} planes

Methodology of simulations

- The new Ni-Al potential.
- Rectangular simulation block with fully periodic boundary conditions. Initial structure B2. Orientations of the axes: [-110], [110], [001].
- Grand-canonical Monte Carlo (NPT) simulations at T = 1200 K with chemical potentials adjusted to give desired Ni-rich chemical compositions.
- Switch to MD simulations in the NPT ensemble at the same temperature and fixed values of the stresses σ_{xx} , σ_{yy} and σ_{zz} .
- Decrease temperature down to 0 K and monitor the block dimensions and energy. Observe the martensitic transformation.
- Increase temperature up to 1200 K and observe the austenitic transformation
- Cooling/heating rate 10¹¹ K/s affects the M_s and A_f temperatures.
- Repeat at different tensile/compressive stresses σ_{zz} (with $\sigma_{xx} = \sigma_{yy} = 0$) to study the stress effect on the transformations.
- Repeat in the presence of a (110) APB, open surface, dislocations to model microstructure effects

B2-L1₀ transformation path at T = 0 K

Demonstration of the shape memory effect

Perfect simulation block, σ_{zz} = 280 MPa

Complete reversibility of the crystal structure and shape!

Demonstration of the shape memory effect

Simulation block with a single APB

Complete reversibility of the crystal structure and shape!

How fast does this happen?

69.5 at.%Ni

 σ_{zz} = 280 MPa

Typical speeds at M_s are 100-300 m/s

Effect of stress on the transformation

Effect of stress on the transformation

Twinned martensite formation

Isothermal annealing at 94 K, compression 800 MPa

Twinned martensite formation

Isothermal annealing at 310 K, compression 200 MPa

N=162,000 atoms Composition: 69.50%Ni

Effect of defects on the transformation

69.5at.%Ni

67.0at.%Ni

(110) APB:	A _f = 827 K; M _s = 700 K	(110) APB:	A_{f} = 467 K; M_{s} = 204 K
Perfect lattice:	A _f = 652 K; M _s = ?	Perfect lattice:	A _f = 372 K; M _s = ?

The APB increases M_s and A_f and induces twinning of the martensite

Summary for the martensitic transformation

- The transformation is fully reversible both in the perfect lattice and in the presence of defects.
- The transformation is strongly controlled by the nucleation process. The martensite/austenite growth is very fast.
- The transformation temperature depends on the cooling/heating rate. Reducing the cooling rate increases M_s. At the extremely high cooling rates implemented in our simulations, homogeneous nucleation at zero pressure could not be observed.
- Tensile and compressive stresses along [001] increase the transformation temperatures (M_s and A_f) and reduce the hysteresis.
- Lattice defects assist the martensite nucleation and increase M_s. But they can also lead to twinned martensite with relatively high A_f.
- The potential shifts the transformation line to higher Ni concentrations in comparison with experiment. However, experimental samples contain internal stresses and Ni segregation at defects.