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Quasiparticle scattering from topological crystalline insulator SnTe (001) surface states
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Recently, the topological classification of electronic states has been extended to a new class of matter known
as topological crystalline insulators. Similar to topological insulators, topological crystalline insulators also have
spin-momentum locked surface states, but they only exist on specific crystal planes that are protected by crystal
reflection symmetry. Here, we report an ultralow temperature scanning tunneling microscopy and spectroscopy
study on topological crystalline insulator SnTe nanoplates grown by molecular beam epitaxy. We observed
quasiparticle interference patterns on the SnTe (001) surface that can be interpreted in terms of electron scattering
from the four Fermi pockets of the topological crystalline insulator surface states in the first surface Brillouin
zone. A quantitative analysis of the energy dispersion of the quasiparticle interference intensity shows two high
energy features related to the crossing point beyond the Lifshitz transition when the two neighboring low energy
surface bands near the X̄ point merge. A comparison between the experimental and computed quasiparticle
interference patterns reveals possible spin texture of the surface states.
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I. INTRODUCTION

Topological insulators are a new classification of matter
characterized by a bulk insulating gap and gapless surface
states protected by time reversal symmetry [1–3]. This is
realized by spin-orbit coupling induced band inversion with
an odd number of Dirac cones. Recently, the topological
classification of materials has been extended to a new phase
of matter, topological crystalline insulators [4,5]. In contrast
to topological insulators, topological crystalline insulators
arise from crystal reflection symmetry and are characterized
by topological surface states with an even number of Dirac
cones. The first topological crystalline insulator was predicted
in the SnTe class of materials [5], the surface states of
which were soon observed in Pb1−xSnxSe [6], SnTe [7], and
Pb1−xSnxTe [8,9] bulk crystals by angle-resolved photoemis-
sion spectroscopy (ARPES). The surface states of this class
of topological crystalline insulators have also been further
studied by scanning tunneling microscopy (STM) [10–12] as
well as electrical transport [13,14]. Most of the studies so
far have focused on cleaved bulk samples. However, there
are several advantages to grow these topological materials
in the form of nanostructures and thin films. First, by going
to lower dimensions, the surface contribution can potentially
be enhanced with increased surface-to-volume ratio [14,15].
Furthermore, compared to bulk crystals, it is much easier to
fabricate devices made from nanostructures and to interface
them with other materials such as superconductors [16,17]
and magnetic materials [18]. Motivated by these advantages,
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we performed an STM study of the topological surface states
of SnTe nanoplates.

Here, we report synthesis and in situ STM measurements on
single crystalline SnTe nanoplates synthesized by molecular
beam epitaxy (MBE). We carried out Fourier transform
scanning tunneling spectroscopy (FT-STS) using an ultralow
temperature STM on the SnTe (001) surface. We observed
quasiparticle interference patterns in the differential tunneling
conductance dI/dV maps, which can be interpreted in terms of
scattering among the four Fermi pockets of the topological
surface states in the first surface Brillouin zone of (001)
planes. A quantitative analysis of the energy dispersion of the
quasiparticle interference intensity reveals features associated
with the high energy crossing point in the surface bands.

II. SYNTHESIS AND CHARACTERIZATION
OF SnTe NANOPLATES

The SnTe nanoplates studied in this work were synthe-
sized by MBE using a high purity SnTe compound source
(pieces, 99.999%) and a separate elemental Sn source (shots,
99.999%). After a 30-min anneal of a graphitized 6H-SiC
(0001) substrate at 300 °C, SnTe was deposited onto the
substrate at ≈ 230 °C with a typical growth rate between
0.3 nm/min and 0.7 nm/min and a Sn to SnTe flux ratio
in the range of 0 to 15%. We note that the compensation
of extra Sn flux (up to 15% in flux ratio) did not seem to
reduce the overall p-doping concentration in the samples.
SnTe has a cubic rock salt crystal structure with a lattice
constant a = 0.633 nm. A schematic of the SnTe (001) surface
is illustrated in Fig. 1(a). Reflection high energy electron
diffraction (RHEED) was used to monitor the growth front,
which indicates single crystal growth mode [Fig. 1(b)]. Ex situ
atomic force microscopy (AFM) [Fig. 1(c)] shows that all these
nanoplates are roughly square shaped, suggesting they have a
preferential out-of-plane orientation along the 〈001〉 direction.
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FIG. 1. (Color online) Synthesis and characterization of SnTe
nanoplates. (a) Schematic of the SnTe rock salt structure. (b) RHEED
pattern from SnTe nanoplates during MBE growth. (c) AFM image of
as grown SnTe nanoplates. (d) XRD from SnTe nanoplates confirms
single crystal nature showing only {001} reflections. The asterisks
indicate the {0001} reflections of the SiC substrate.

This preferential orientation of the nanoplates is confirmed
by x-ray diffraction (XRD) measurement, showing only the
{001} reflections [Fig. 1(d)]. Electron backscatter diffraction
measurements on individual nanoplates also confirmed the
nanoplates were single crystalline with (001) oriented top
surfaces.

III. EXPERIMENTAL RESULTS

A. Sn vacancy defects

After the growth of SnTe nanoplates, the sample was
immediately transferred from the MBE chamber to an inter-
connected 10 mK ultralow temperature STM without breaking
vacuum [19]. The STM topographic image in Fig. 2(a) reveals
the SnTe (001) surface with large atomically flat terraces
separated by a step height of one half unit cell [≈0.32 nm, see
Fig. 1(a)]. Figure 2(b) shows a smaller-scale STM topographic
image of the SnTe (001) surface, with a number of defects,
which is a characteristic of these samples. At positive sample
bias (Vbias = 0.8 V), only the Sn sublattice is mainly revealed
as electrons tunnel into the empty states of the sample. The
lattice spacing is consistent with (110) interplanar distance
d = a/

√
2 = 0.45 nm as illustrated in Fig. 1(a). Apart from

some adatoms at the surface, many vacancies, presumably Sn
vacancies, are clearly visible. This is consistent with as-grown
SnTe bulk crystals, which are typically p-doped due to Sn
vacancies [7]. The long wavelength roughness at the SnTe
surface (root mean square roughness =8.8 pm) may be due
to the underlying structure of multilayer graphene grown on
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FIG. 2. (Color online) (a) A 100×100 nm STM topographic
image showing terraces with step height of one half unit cell
(≈0.32 nm). The color scale covers a height range of 1.15 nm. (b) A
typical 55×55 nm STM topographic image at the (001)-terminated
surface of a SnTe nanoplate, tunneling setpoint: Vbias = 0.8 V and
I = 100 pA. The color scale covers a height range of 98 pm. (c)
Schematic SnTe (001) surface state band structure. The first surface
Brillouin zone is indicated by the shaded square. (d) Single point
dI/dV spectrum, tunneling setpoint: Vbias = 0.7 V and I = 150 pA.
Inset shows a simplified schematic band diagram of the two low
energy surface bands located symmetrically about the X̄ point along
�̄X̄ direction. E0 denotes the zero energy crossing point, and EH±
denotes the high energy crossing points beyond the Lifshitz transition.
Blue and red lines indicate opposite spin orientations.

the SiC substrate, which was used as a substrate for the SnTe
growth.

The (001) surface of SnTe has been predicted [5] and shown
[7] to have topological surface states, a schematic of which
is shown in Fig. 2(c). By rotation symmetry, there are four
low energy bands near the four equivalent X̄ points in the
first surface Brillouin zone indicated by the shaded square.
Due to crystal reflection symmetry, there are two low energy
surface bands located symmetrically about the X̄ point along
the �̄X̄ direction. The positions of the neighboring zero energy
crossing points are denoted as �̄1 and �̄2. When the energy is
increased/decreased from the zero energy crossing point, the
two low energy surface bands on both sides of the X̄ point
touch each other, exhibiting a Lifshitz transition, where two
electron/hole pockets reconnect to form a large electron/hole
and a small hole/electron pocket centered at the X̄ point. When
the energy is further increased/decreased from the zero energy
crossing point, the high energy surface bands start from the
high energy crossing points at the X̄ point.

The local density of states of the SnTe nanoplates was
obtained by measuring the bias dependent dI/dV spectra
with a lock-in amplifier. Figure 2(d) is a typical single
point spectrum with a minimum at ≈350 meV. The inset
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FIG. 3. (Color online) Atomic defects on the SnTe (001) surface. (a) and (c) Experimental high-resolution topographic images of atomic
defects on the SnTe (001) surface at I = 70 pA and different sample biases. The color scale range is 65 pm for Vbias = 1.0 V, 60 pm for Vbias =
0.8 V, 65 pm for Vbias = 0.6 V, 70 pm for Vbias = 0.4 V, 40 pm for Vbias = −0.8 V, 50 pm for Vbias = −0.6 V, 60 pm for Vbias = −0.4 V, and
55 pm for Vbias = −0.2 V. The Sn vacancies are indicated by red arrows and other types of defects are indicated by green arrows in image
Vbias = 1.0 V. The dashed lines indicate the Te atom site positions. (b) and (d) DFT simulated topographic images with Sn vacancies at different
sample biases. The color scale range is 162 pm and the dashed lines indicate the Te atom site positions.

shows a simplified schematic of the two low energy surface
bands located symmetrically about the X̄ point along the �̄X̄
direction. Comparing the spectrum with this surface state band
diagram, we assign this dI/dV minimum as the zero energy
crossing point E0. The position of the zero energy crossing
point indicates that our nanoplates are p-doped, consistent with
the observation of a large amount of Sn vacancies at the surface.
Similar to the STM work on cleaved bulk Pb1−xSnxSe [10], we
did not observe strong features in the spectra associated with
the Lifshitz transition. However, features related to the Lifshitz
transition were recently observed in Ref. [11] in Pb1−xSnxSe,
and it is uncertain why they are not visible in our spectra on
SnTe. Evidence for the Lifshitz transition is seen in our data in
the analysis of the quasiparticle interference presented in sec.
III below. Based on the position of the zero energy crossing
point and the band gap (≈0.18 eV) of bulk SnTe, the kink near
the zero bias in the spectrum is possibly related to states in the
bulk valence band.

The p-doping is generally attributed to the tendency to
grow nonstoichiometric SnTe with Sn vacancies, which can

be observed in the STM images. Figures 3(a) and 3(c) show a
series of high-resolution topographic images of atomic defects
from the same area at different sample biases. At high positive
sample biases [Fig. 3(a)], electrons tunnel from the tip into the
empty states of the conduction band and image mainly the Sn
sublattice. The absent rows of Te atoms are between the Sn
rows as indicated by the white dashed lines in Fig. 3(a). We
can clearly see two missing Sn atoms at the surface indicated
by the red arrows, which we identify as Sn vacancies at the
surface layer. This can be further confirmed by imaging the
same area at negative sample biases [Fig. 3(c)]. At a negative
bias, electrons tunnel from the filled states of the valence band
into the tip and the Te sublattice is enhanced in the topographic
images. By comparing the position of the two sublattices, we
can identify that the Sn vacancies at the top surface layer are
located at the center of four neighboring Te atoms [Fig. 3(c)].
The Te atom rows are indicated by the white dashed lines
in Fig. 3(c). We note that the Sn sublattice in the image has
already switched to the Te sublattice with the Sn vacancy sites
at the center of four neighboring Te atoms for energies near the
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FIG. 4. (Color online) dI/dV spatial maps of a 47.5×47.5 nm area at different energies with respect to the zero energy crossing point E0,
which is 350 meV above the Fermi level.

zero energy crossing point. This is likely due to hybridization
effects induced by the large spin-orbit coupling across the bulk
band gap.

To further verify the Sn vacancies observed at the SnTe
(001) surface, we simulated the STM images in Figs. 3(b)
and 3(d) as integrated charge density isosurfaces from density
functional theory (DFT) calculations using the generalized
gradient approximation for the exchange-correlation func-
tional [20–23]. The atomic configuration consisted of a three
layer slab with 3×3 surface unit cells having one surface Sn
atom removed while all other atoms were fixed at their bulk
positions. A real space grid spacing of 30 pm and a k-point
mesh of 5×5×1 were used with a supercell that included
1 nm of vacuum along the direction normal to the surface.
For comparison to the experimentally measured STM images,
each simulated image has its supercell repeated three times
in each direction (for a total of 9×9 unit cells with nine
vacancies per image). As we can see in Figs. 3(b) and 3(d), the
simulated STM images correctly capture the main features of
the experimental data: vacancies at Sn atomic sites at positive
sample biases occur in line with the Sn rows and in between
the Te atomic sites at negative sample biases. There are also
several other types of defects indicated by the green arrows in
Fig. 3(a), which could be antisites or vacancies underneath the
surface layer. Identification of these different types of defects
would require further DFT simulations.

B. Quasiparticle interference

The presence of these surface defects is actually useful
for studying the Fermi surface of SnTe through electron
scattering. Indeed, clues of such scattering from defects can
already be seen in topographic images as interference patterns
around the Sn vacancies [Fig. 3(a)]. To better understand
the scattering process, we study quasiparticle interference
patterns obtained from FT-STS maps, which can provide

the real space and momentum space electronic structure
information simultaneously. This method has been applied to
study noble metal surface states [24], high-Tc superconductors
[25], graphene [26,27] as well as topological materials [28].
Figure 4 shows interference patterns in STS (dI/dV) maps at
different sample biases with respect to the zero energy crossing
point E0 of 350 meV. The image size (47.5×47.5 nm) and
resolution (475×475 pixels) were chosen to cover at least the
first two Brillouin zones with a resolution better than 1% of
the Brillouin zone size. By taking the Fourier transform of
the STS maps, we can measure the quasiparticle scattering
vectors as a difference of the initial and final wave vectors
q = kf − ki for elastic scattering. Combined with information
on the surface band structure in k space, we can study the
Fermi surface and possible spin textures of the surface states.
Figure 5(a) shows a 3D illustration of the low energy surface
bands below the Lifshitz transition in the first surface Brillouin
zone. Theoretically expected spin texture of the topological
crystalline insulator surface states is indicated by the small
arrows. Possible elastic scattering between kj(E) is indicated
by the color coded arrows: q1 represents intracone scattering
and q2 – q4 represent intercone scattering. In Fig. 5(b), we
show the schematic contours of constant energy of the surface
states near the zero energy crossing point enclosed in the first
surface Brillouin zone with size of 2π/d×2π/d. We also
include q ′

3 which represents the intercone scattering between
the two neighboring low energy bands located symmetrically
about the X̄ point. Due to the periodic Brillouin zone boundary
condition, q ′

3 is equivalent to q3. The quasiparticle interference
patterns from the first surface Brillouin zone can be described
in terms of the q wave vectors within a box with size of
4π/d×4π/d [Fig. 5(c)]. The intracone scattering (q1) is
represented by the circle symbol at the center of the box and
the intercone scattering (q2 – q4) is represented by the square
and star symbols along the four equivalent directions of �̄X̄
and �̄M̄, respectively. Here, q ′

3 is also expected to be along the
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FIG. 5. (Color online) Quasiparticle interference at the SnTe
(001) surface. (a) Schematic of SnTe (001) surface band structure
at energies below the Lifshitz transition in the first surface Brillouin
zone. q1 represents intracone scattering; q2, q3, and q4 represent
intercone scattering. (b) Schematic contours of constant energy
near the zero energy crossing point in the first surface Brillouin
zone. q vectors are indicated by the color coded arrows. Due to
periodic Brillouin zone boundary condition, q3 is equivalent to q ′

3, the
intercone scattering across the first surface Brillouin zone boundary.
(c) Schematic quasiparticle interference pattern enclosed by a box
with size of 4π/d×4π/d in q space.

�̄X̄ direction but closer to q1, as indicated by the dashed star
symbols. By rotation and crystal reflection symmetry, there
are only two sets of different intercone scattering wave vectors
q2 and q3 (q ′

3). As the energy is moved away from the zero
energy crossing point, the general trend of the quasiparticle
interference pattern is that the disk size of the q vectors
increases as the Fermi pockets become larger while the center
position of the q-vector disks remains relatively unchanged.

Figure 6 shows raw unfiltered quasiparticle interference
patterns obtained by Fourier transforming the dI/dV maps in
Fig. 4. The four bright spots near q3 and the four bright spots in
the middle of the image edges are the Bragg peaks originating
from the atomic corrugation of the underlying SnTe lattice [see
arrows in Fig. 6(a)]. The intracone scattering q1 wave vector is
located at the center, which is accompanied by intensity from
long wavelength modulations from disorder in the sample. The
two pairs of intercone scattering ±q2 and ±q3 wave vectors
are also observed at the expected positions. The particular
shape of q2 and q3 features results from the anisotropy of the

surface bands and possibly some contribution from the spin
texture of the surface states. The effect of the surface states
spin texture on the quasiparticle interference pattern will be
further discussed in Sec. III C. Although q ′

3 is also expected
according to the schematic in Fig. 5, it was not observed.
This may be related to matrix element effects resulting in a
different amplitude of q ′

3. As the energy is stepped through the
zero energy crossing point, the intensity of the quasiparticle
interference patterns decreases first and then increases, with
a minimum around the zero energy crossing point. We also
note an intensity asymmetry in the quasiparticle interference
patterns with respect to q2 and q4, which occurs near the
zero energy crossing point [Figs. 6(b)–6(d)]. The origin of
this asymmetry is unknown at present, but may be due to tip
asymmetries or rhombohedral distortion in the SnTe atomic
lattice due to a spontaneous ferroelectric phase transition at
low temperature [29,30].

To further study the Fermi surface of the SnTe (001)
topological surface states, we plot the energy dispersion of the
quasiparticle interference pattern intensity along the �̄M̄ (q2)
and �̄X̄ (q3) directions in Figs. 7(a) and 7(b), respectively.
First, let’s take a look at the q1 feature near zero wave vector
transfer q = 0. Near the zero energy crossing point, the q1

intensity for both directions in Figs. 7(a) and 7(b) is dominated
by intensity due to long wavelength modulations from disorder
in the sample. However, as the energy is increased/decreased
away from the zero energy crossing point, the q1 feature starts
to disperse as the Fermi pockets of the surface states grow
larger and is particularly clear in Fig. 7(b). In Fig. 7(a), we
can clearly see the ±q2 feature at ≈±0.75 Å−1. The intensity
of q2 is weaker, and its peak width is narrower when the
energy is close to the zero energy crossing point. Below the
zero energy crossing point, the q2 peak width increases as
the Fermi pockets become larger while its position remains
almost unchanged as expected. For dispersion along the q3

direction [Fig. 7(b)], the high intensity features at ±1.45 Å−1

are the Bragg peaks. Features of ±q3 wave vectors are
located close to the Bragg peaks at ≈±1.09 Å−1, which do
not disperse much as the energy is changed. We find the
separation between the zero energy crossing point �1 and
the X point in k space to be 0.180 ± 0.003 Å−1 [31], which
is slightly larger than the value of 0.15 ± 0.01 Å−1 obtained
by ARPES from SnTe bulk crystal [9]. The larger �1X
distance in our sample is likely due to the higher p-doping
concentration as Ref. [9] shows that less p-doped samples
tend to have a smaller �1X distance. At E−E0 � −175 meV,
there are two distinct features near q3 and q1 dispersing in
opposite q directions as a function of energy. As we will
discuss below and in Figs. 8 and 9, these two features, noted
as qH− and q ′

H− respectively, are related to the high energy
crossing point beyond the Lifshitz transition energy.

From the energy dispersion of quasiparticle interference
pattern intensity plots, we can in principal extract information
about the Fermi velocities along the high symmetry (q2 and q3)
directions. However, due to the strong domination of intensity
due to disorder near q = 0 at energies close to the zero energy
crossing point, it is not reliable to deduce the Fermi velocities
from the q1 wave vector. Instead, we show that the Fermi
velocity along the �̄X̄ and X̄M̄ directions can be possibly
deduced from the qH− and q ′

H− features at energies far away
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FIG. 6. (Color online) Experimental quasiparticle interference patterns (unfiltered) at E0 + 100 meV (a), E0 + 50 meV (b), E0 (c),
E0 − 50 meV (d), E0 − 100 meV (e), E0 − 150 meV (f), E0 − 200 meV (g), and E0 − 250 meV (h). E0 = 350 meV above the Fermi level.

from the zero energy crossing point observed in Fig. 7(b).
Figure 8(a) shows line cuts along the �̄X̄ (q3) direction in the
energy range from E–E0 = −300 meV to E–E0 = −200 meV.
The peaks near the Bragg peak and q = 0 are denoted as qH−
and q ′

H−, respectively, as indicated by the arrows in Fig. 8(a).
As we can see clearly from Figs. 7(b) and 8(a), these two
features disperse in opposite q directions. The inset of Fig. 8(a)
plots the sum of qH− and q ′

H− peak positions vs energy, which
is very close to the Bragg peak position (red dashed line), i.e.
2π/d. Figures 8(b) and 8(c) plot energy dispersion of the qH−
and q ′

H− peak positions. Linear fits to the data yield the same
slope within error but with opposite signs.

These results suggest that the qH− and q ′
H− features

originate from the same scattering mechanism. By examining
possible scatterings along the �X direction above the Lifshitz
transition, we discuss below two possible interpretations of
the data in terms of relevant critical spanning vectors and
show these two features can be related to the high energy
crossing point formed when the two neighboring low energy
surface bands (�̄1 and �̄2) near the X point merge together.
Figure 9(a) shows schematic contours of constant energy of
the surface bands above the high energy crossing point in
k space. The box indicates the first surface Brillouin zone.
Scattering along the �X direction is dominated by the critical
spanning vectors along line cuts of �X (blue dashed line)
and XM (red dashed line). In the following paragraphs, we
will discuss two possible interpretations for the qH− and q ′

H−

features: (1) Scattering dominated by the critical spanning
vectors along the �X line cut, and (2) Scattering dominated
by the critical spanning vectors along the XM line cut.

1. Scattering along the �X line cut

First, we focus on the �X line cut in Fig. 9(b). There are
two linear surface bands offset vertically by 2EH+ in energy
at the X point. We refer to the cone (pocket from branches
2 and 3) with the crossing point at EH+ as CONEH+ and the
cone (pocket from branches 1 and 4) with the crossing point
at EH− as CONEH− (Unless noted elsewhere, +/− denotes
features above/below the zero energy crossing point). Due
to the periodic Brillouin zone boundary conditions, possible
scatterings among the surface bands on the opposite zone
boundaries can be reduced to intracone scatterings of CONEH+
(q�̄X̄

H+, solid green arrows) and CONEH− (q�̄X̄
H−, solid green

arrows). We note q�̄X̄
H± at EH− < E < EH+ is a subset of

q3 defined earlier in Fig. 5. The q�̄X̄
1 wave vector is indicated

by the solid red arrow.
After identifying the possible scattering along the �X

line cut, we can translate this from k space to q space to
understand the qH− and q ′

H− features observed in Fig. 7(b).
Figure 9(d) shows the energy dispersions of the critical
spanning vectors along the �̄X̄ (q3) direction using energy-
momentum dispersions of the surface bands [32,33]

EH,L(k) =
√

m2 + δ2 + v2
xk

2
x + v2

yk
2
y ± 2

√
m2v2

xk
2
x + (m2 + δ2)v2

yk
2
y, (1)

with the parameters [33] m = −70 meV, δ = 26 meV, vx =
2.40 eV·Å, and vy = 1.40 eV·Å. Solid lines represent the

energy dispersions of the critical spanning vectors along the
�̄X̄ line cut with kx = 0 in Eq. (1). All the features from the
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FIG. 7. (Color online) (a) Energy dispersion of quasiparticle in-
terference intensity along the �̄M̄ (q2) direction. (b) Energy dispersion
of quasiparticle interference intensity along the �̄X̄ (q3) direction.

�̄X̄ line cut have linear energy dispersion with the same slope
of vy/2. q�̄X̄

3 (solid green lines) is located 0.1 Å−1 away from
q = 0 and 2π/d at the zero energy crossing point. As energy
is increased/decreased from the zero energy crossing point,
one branch of q�̄X̄

3 extends out to q = 0 or 2π/d at EH± =
±75 meV and then folds back as q�̄X̄

H± with the same slope.
Here, q�̄X̄

1 (solid red lines) originates from q = 0 and 2π/d

at the zero energy crossing point and disperse as a function of
energy with the same slope as q�̄X̄

3 .
With the energy dispersions of the critical spanning vectors

along the �̄X̄ line cut described above, we next aim to identify
the origin of the qH− and q ′

H− features. As discussed in the
previous paragraph, the slope of all the features is vy/2.
Therefore, we can obtain the Fermi velocities associated with
the qH− and q ′

H− peaks from the linear fits in Figs. 8(b) and
8(c): vF−H = 1.51 ± 0.08 eV·Å and v′

F−H = 1.28 ± 0.28 eV·Å
[34]. We note that qH+ and q ′

H+ are also visible at E – E0 >

75 meV in Fig. 7(b). However, we were not able to deduce
reliable Fermi velocities due to limited data range. Depending
on the choice of parameters for Eq. (1), there can be multiple

energy dispersions of different critical spanning vectors close
to the observed qH− and q ′

H− peaks. Although it may be difficult
to distinguish them in the high energy range, it is possible to
identify these features by examining their intercepts to q =
0 and 2π/d. As shown in Fig. 9(d), The intercepts at q =
0 or 2π/d for q�̄X̄

H−, q�̄X̄
1 , and q�̄X̄

H+ are EH− (negative value),
0, and EH+ (positive value), respectively. The linear fits in
Figs. 8(b) and 8(c) yield the intercept of qH− to the Bragg peak
as EH− = −71 ± 9 meV and the intercept of q ′

H− to q = 0 as
E′

H− = −97 ± 36 meV, respectively [34]. The negative inter-
cepts of the qH− and q ′

H− peaks rule out q�̄X̄
1 and q�̄X̄

H+. There-
fore, we can attribute the experimental qH− and q ′

H− peaks to
the q�̄X̄

H− critical spanning vector for this case of �̄X̄ scattering.
This choice gives the Fermi velocity along the �̄X̄ direction
determined from qH− as vy = 1.51 ± 0.08 eV·Å and the high
energy crossing point EH− = −71 ± 9 meV [34]. The Fermi
velocity deduced from this case is close to vy = 1.3 eV·Å
suggested in Ref. [33] and vy = 1.1 ± 0.3 eV·Å obtained from
Pb0.6Sn0.4Te bulk crystals [8] by ARPES measurements, but
smaller than vy = 2.5 ± 0.3 eV·Å obtained from SnTe bulk
crystals [7]. To compare directly with the experimental energy
dispersion of the quasiparticle interference intensity, we plot
the energy dispersion of the critical spanning vectors for the
�X line cut on top of the experimental data for the range of
q < 0 (left hand portion) in Fig. 9(e) with vy = 1.51 eV·Å
and

√
m2 + δ2 = 71 meV. The qH− and q ′

H− features are well
described by the energy dispersion of the q�̄X̄

H− critical spanning
vector (solid green lines). However, using relations �̄1,2 =
(0, ± √

m2 + δ2/vy) and EH± = ±√
m2 + δ2 from Ref. [33],

we get �̄1X̄ = 0.047 ± 0.006 Å−1 [35]. This value is much
smaller than the value of 0.180 ± 0.003 Å−1 obtained from
the quasiparticle interference patterns in Fig. 6 and energy
dispersion in Fig. 7(b). As indicated in Fig. 9(e) by the arrow,
the expected q3 location at the zero energy crossing point is
closer to the Bragg peak than the experimental result.

2. Scattering along the XM line cut

We next explore the possibility of scattering along the XM
line cut. Figure 9(c) shows the schematic critical spanning
vectors along the XM line cut. Possible scatterings are
indicated by the color coded arrows: qX̄M̄

H+ represents scattering
between branches 2 and 3 above EH+; qX̄M̄

1L+ represents
scattering between branches 1 and 3 or branches 2 and 4;
qX̄M̄

2L+ represents scattering between branches 1 and 4; and qX̄M̄
3L+

represents scattering between branches 3 and 2 at EL+ < E <

EH+. We note that for EL− < E < EL+, the scattering along the
XM direction for the two separate cones located symmetrically
about the X point is essentially a subset of q1.

Using Eq. (1) with ky = 0 and parameters described above,
we plot the energy dispersion of the critical spanning vectors
along the X̄M̄ line cut as dashed lines in Fig. 9(d). The qX̄M̄

H±
(dashed green lines) originates from q = 0 and 2π/d at EH± =
±75 meV while qX̄M̄

1L± (dashed red lines) originates from q = 0
and 2π/d at EL± = ±26 meV. Both qX̄M̄

2L± and qX̄M̄
3L± originate at

0.058 Å−1 away from q = 0 and 2π/d at EL± = ±26 meV. As
the energy is moved away from the zero energy crossing point,
qX̄M̄

3L± extends to q = 0 and 2π/d at EH± = ±75 meV while
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FIG. 8. (Color online) (a) Slices of the quasiparticle interference intensity extracted from Fig. 7(b) at energies from E0 − 300 meV to
E0 − 200 meV. The arrows indicate the Bragg peak, q3, qH−, and q ′

H− features. The inset plots the sum of qH− and q ′
H− vs energy, and the

red dashed line indicates the position of the Bragg peak. (b) E vs q data extracted from the energy dispersion of qH− peak position. The one
standard deviation uncertainty in the q wave vector obtained from the peak fitting is less than the symbol size in the plot. The red line is a linear
fit which yields vF−H = 1.51 ± 0.08 eV·Å [34]. The dashed lines are the energy dispersion of the critical spanning vector qX̄M̄

H− with different
choices of δ. (c) E vs q data extracted from the energy dispersion of q ′

H− peak position. The red line is a linear fit which yields v′
F−H = 1.28 ±

0.28 eV·Å [34].

qX̄M̄
1L± and qX̄M̄

2L± features disperse with the same curvature as
qX̄M̄

H± . When energy is far away from the zero energy crossing
point (E–E0 � δ), qX̄M̄

H± , qX̄M̄
1L±, and qX̄M̄

2L± for the X̄M̄ line cut
have a nearly linear energy dispersion with a slope ≈vx/2.
Similar to the case of �X scattering, we can distinguish these
three features by examining their intercepts to q = 0 and 2π/d.
Linear extrapolation of the high energy features of qX̄M̄

H− , qX̄M̄
1L−,

and qX̄M̄
2L− to q = 0 or 2π/d gives m (negative value), 0, and

−m (positive value), respectively. The negative intercepts of
the qH− and q ′

H− peaks rule out qX̄M̄
1L− and qX̄M̄

2L−. Therefore, we
can attribute the experimental qH− and q ′

H− peaks to the qX̄M̄
H−

critical spanning vector for this case of X̄M̄ scattering and
get the Fermi velocity along the X̄M̄ direction vx = 1.51 ±
0.08 eV·Å from the slope and m = −71 ± 9 meV from the
intercept. We can then get the Fermi velocity along the �̄X̄
direction vy as a function of the Lifshitz transition energy δ

using vy = ±√
m2 + δ2/�̄1,2, where m = −71 ± 9 meV and

�̄1,2 = 0.180 ± 0.003 Å−1 [31]. Table I shows vy and EH− as
a function of δ. To determine a range of δ that is consistent
with our data, we plot the energy dispersion of the critical
spanning vector qX̄M̄

H− with different choices of δ as dashed
lines in Fig. 8(b). The plots follow the data for δ = 20 and
40 meV, but start to deviate from the data for δ � 60 meV.
Therefore, we determine the range of the Lifshitz transition
energy δ to be ≈0 to 60 meV. With both vx and vy deduced
from our data, we plot the energy dispersions of the critical
spanning vectors for both �X (solid lines) and XM (dashed
lines) line cuts on top of the experimental data for the range
of q > 0 (right hand portion) in Fig. 9(e), with δ = 30 meV,
m = −71 meV, vx = 1.51 eV·Å, and vy = 0.428 eV·Å. Now
the q location of the q3 feature at the zero energy crossing
point is consistent with our data and the qH− and q ′

H− peaks
are well described by the energy dispersion of the qX̄M̄

H− critical
spanning vector (dashed green lines). The domination of the
qX̄M̄

H± features over the q�̄X̄
H± features can be expected because of
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FIG. 9. (Color online) (a) Schematic contours of constant energy of the surface bands at energy above the high energy crossing point. The
box indicates the first surface Brillouin zone. (b) Schematic band diagram showing critical spanning vectors along the �̄X̄ line cut [dashed
blue line in panel (a)] in k space. Red arrows represent q�̄X̄

1 and green arrows represent intracone scatterings of CONEH+ and CONEH−. q�̄X̄
H± at

EH− < E < EH+ is a subset of q�̄X̄
3 defined earlier in Fig. 5. (c) Schematic band diagram showing critical spanning vectors along the X̄M̄ line

cut [dashed red line in panel (a)] in k space. Possible scatterings are indicated by the color coded arrows. (d) Energy dispersion of the critical
spanning vectors. Solid and dashed lines represent the critical spanning vectors along the line cuts of �̄X̄ and X̄M̄ directions, respectively. The
origins of the critical spanning vectors are indicated by the arrows. (e) Energy dispersion of the critical spanning vectors superimposed on the
experimental data along the �̄X̄ direction. Parameters for q < 0: vy = 1.51 eV·Å and

√
m2 + δ2 = 71 meV. Parameters for q > 0: δ = 30 meV,

m = −71 meV, vx = 1.51 eV·Å, and vy = 0.428 eV·Å. Solid and dashed lines indicate energy dispersion of the critical spanning vectors along
the �̄X̄ and X̄M̄ line cuts, respectively. Solid violet lines: q�̄X̄

1 . Solid green lines: q�̄X̄
H±. Dashed green lines: qX̄M̄

H± . Dashed violet lines: qX̄M̄
1L±.

Dashed blue lines: qX̄M̄
2L± and qX̄M̄

3L±.

the better nesting of the Fermi surface along the XM direction.
However, we did not observe any strong energy dependence of
the other features such as q1 and q3 as suggested by the critical
spanning vectors. We also note the Fermi velocities deduced
from our data for this case is much smaller than those obtained
from ARPES measurements [7,8].

In summary, both cases of scattering along the �X and
XM line cuts can describe the observed qH− and q ′

H− features.
However, neither explains our data completely. The case for
the �X scattering would indicate that the q3 features are closer

TABLE I. The Fermi velocity along the �̄X̄ direction vy and the
high energy crossing point energy EH− as a function of the Lifshitz
transition energy δ.

δ (meV) vy (eV·Å) EH− (meV)

10 0.398 −72
20 0.410 −74
30 0.428 −77
40 0.453 −81
50 0.482 −87
60 0.516 −93
80 0.594 −107
100 0.681 −123

to the Bragg peaks than what was observed in our quasiparticle
interference patterns. The case for the XM scattering would
indicate smaller Fermi velocities than those reported in the
literature [7,8,33], which give rise to strong energy dependent
q features and interconnected patterns at high energies [see
Figs. 9(e) and 10] that were not observed in the data. Therefore,
it is likely that the actual scattering interference phenomena
observed in STS measurements has contributions from both
of these extreme cases. In the next section, we will simulate
quasiparticle interference patterns to shine light on these two
possible interpretations.

C. Surface states spin texture

To probe the possible spin textures at the surface, we have
also carried out calculations of the joint density of states.
The joint density of states is closely related to quasiparticle
interference patterns because scattering q wave vectors that
connect regions of high density of states on the contours of
constant energy contribute to a large degree in the joint density
of states maps. The joint density of states is computed by taking
the autoconvolution of the initial and final scattering states [28]

JDOS(q,E) =
∫

ρ(k,E)ρ(k + q,E)d2k, (2)

where ρ(k,E) and ρ(k + q,E) are the initial and final density
of states. The density of states for Eq. (2) is obtained as
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FIG. 10. (Color online) Computed quasiparticle interference patterns. (a) Computed joint density of states (JDOS) without taking spin into
account at different energies with respect to the zero energy crossing point. Parameters: m = −70 meV, δ = 26 meV, vx = 2.40 eV·Å, and
vy = 1.51 eV·Å. (b) Computed spin selective joint density of states (SJDOS) with the spin texture of the surface states taken into account at
different energies with respect to the zero energy crossing point. Parameter choice is the same as panel (a). (c) Computed joint density of states
without taking spin into account at different energies with respect to the zero energy crossing point. Parameters: m = −71 meV, δ = 30 meV,
vx = 1.51 eV·Å, and vy = 0.428 eV·Å. (d) Computed spin selective joint density of states with the spin texture of the surface states taken into
account at different energies with respect to the zero energy crossing point. Parameters are the same as in panel (c).

a constant around the contours of constant energy derived
from the energy-momentum dispersions of the surface bands
described by Eq. (1). To compare the calculation with our
experimental data, we show the computed joint density of
states in Figs. 10(a) and 10(c) for different energies away
from the zero energy crossing point. For the case of scattering
along the �X line cut [Fig. 10(a)], we cannot obtain vx

directly from our data, but given that our experimental values
of vy = 1.51 ± 0.08 eV·Å and

√
m2 + δ2 = 71 ± 9 meV

are close to vy = 1.30 eV·Å and
√

m2 + δ2 = 75 meV

in Ref. [33], it is reasonable to choose m = −70 meV,
δ = 26 meV, and vx = 2.40 eV·Å from Ref. [33] with an
experimental value of vy = 1.51 eV·Å for the joint density
of states calculation to have a qualitative comparison with
the experimental quasiparticle interference patterns. As for
the case of scattering along the XM line cut [Fig. 10(c)],
we choose m = −71 meV, δ = 30 meV, vx = 1.51 eV·Å,
and vy = 0.428 eV·Å obtained from our data. The white
dashed boxes indicate the first scattering zones with a size
of 4π/d×4π/d. The calculation suggests a rich structure in
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the quasiparticle interference patterns. When the energy is
decreased from the zero energy crossing point, the general
trend is that the disk size for all the q wave vectors becomes
larger as the surface state Fermi pockets grow larger. The
calculated patterns using the smaller Fermi velocities obtained
from the XM scattering [Fig. 10(c)] generally have a larger disk
size compared to those obtained with larger Fermi velocities
in Fig. 10(a). Figure 10(c) also shows that different q features
such as q1 and q3 become interconnected to each other for
energies far away from the zero energy crossing point.

To understand the impact of the spin-momentum locked
surface states on the scattering process, we also take the
spin texture into account and compute the spin selective joint
density of states following Ref. [28]

SJDOS(q) =
∫

ρ(k)T (q,k)ρ(k + q)d2k, (3)

where T (q,k) is the spin-dependent scattering matrix element.
We model the spin texture as simple artificial momentum-
locked spins that are tangential to the contours of constant
energy. Due to the spin-momentum locking mechanism, the
scattering process is suppressed for the unaligned spins
and forbidden for oppositely aligned spins. Thus, this spin-
dependent scattering causes the quasiparticle interference
pattern to differ from the one obtained from the joint density
of states without considering spin directions. As shown in
Figs. 10(b) and 10(d), the computed spin selective joint density
of states with the same two sets of parameters obviously
contrast the corresponding ones obtained from the joint density
of states. The spin selective joint density of states disk size for
q2 and q3 is smaller over the entire energy range compared
to that of the joint density of states, which indicates reduced
scattering at the surface. Furthermore, the changed shape of
the q vectors as compared to that of the joint density of
states also suggests reduced intra- and intercone scattering.
A direct comparison between the experimental and computed
quasiparticle interference patterns suggests the choice of larger
Fermi velocities for the surface bands (the �X scattering case)
agrees better with our experimental quasiparticle interference
patterns though the observed �̄1X̄ value is larger than expected
based on the model in Ref. [33]. This discrepancy may be
related to the warping in the Fermi surface of the surface bands

and/or the limitation of the model. The small disk size of q2 and
q3 in our experimental quasiparticle interference patterns also
suggests reduced scattering at the surface, possibly due to the
spin-momentum locked topological surface states. However,
the relatively weak scattering from defects and smearing
of features due to surface disorder preclude a definitive
confirmation of the spin texture of the surface states.

IV. CONCLUSIONS

In conclusion, we have synthesized single crystalline SnTe
nanoplates on graphitized 6H-SiC substrates by MBE and car-
ried out in situ STM measurements on the (001) surface states.
Our observation of the quasiparticle interference patterns is
consistent with scattering among the four Fermi pockets of the
surface states in the first surface Brillouin zone. The energy
dispersion of the quasiparticle interference intensity shows
two high energy features related to the crossing point beyond
the Lifshitz transition when the two neighboring low energy
surface bands near the X̄ point merge. We have presented
two possible interpretations for the two high energy features
due to different scattering vectors. A comparison between
the experimental and computed quasiparticle interference
patterns seems to suggest the case of �X scattering agrees
better with our data as well as possible spin texture of the
surface states. This work demonstrates that SnTe nanoplates
can provide a model system for studying topological crys-
talline insulator surface states and exploring potential device
applications.
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