Moles W-Fraction Activity Potential Ref.s 3 1.0879E-03 2.3315E-03 -6.4162E+04 S 01 1.0361E-01 1.4754E-03 -6.9006E+04

X(C)=5E-3, X(CR)=1.1E-1, P=100000, N=

=1273.15, X(C)=5E-3, X(CR)=1.1E-1, P=100000, N=1

Temperature 1273.15, Pressure 1.000000E+05 Number of moles of components 1.00000E+00, Mass 5.52042E+01 Total Globs energy -0.41714E+04, Enthalpy 3.84273E+04, Volume 7.33528E-04

oles W-Fraction Activity Potential Ref. state 1.0879E-03 2.3315E-03 -6.4162E+04 SER 1.1.0361E-01 1.4754E-03 -6.9006E+04 SER

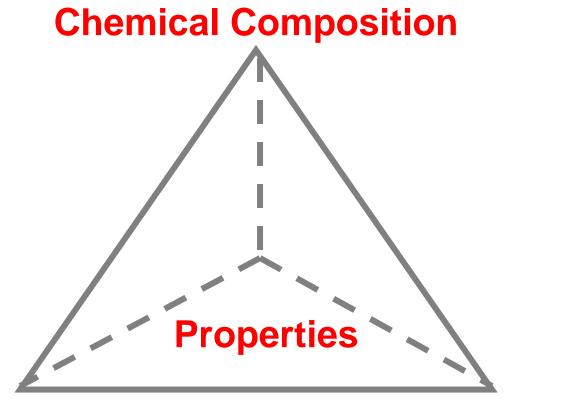
CALCULATING THERMODYNAMIC PROPERTIE

Thermo-Calc Software

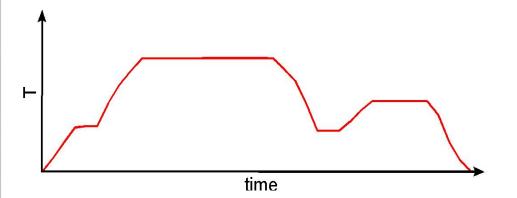
CALCULATING THERMODYNAMIC PROPERTIES

TC-PRISMA – A Tool for Simulation of Precipitation Reactions in Alloys

Henrik Strandlund, Xiaogang Lu, Qing Chen Presented by Paul Mason

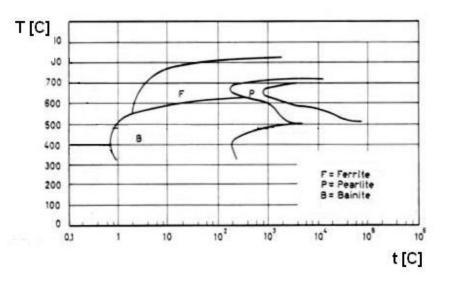

Outline

- Background
- Simulations of precipitation
- Models
- New software tool: TC-PRISMA

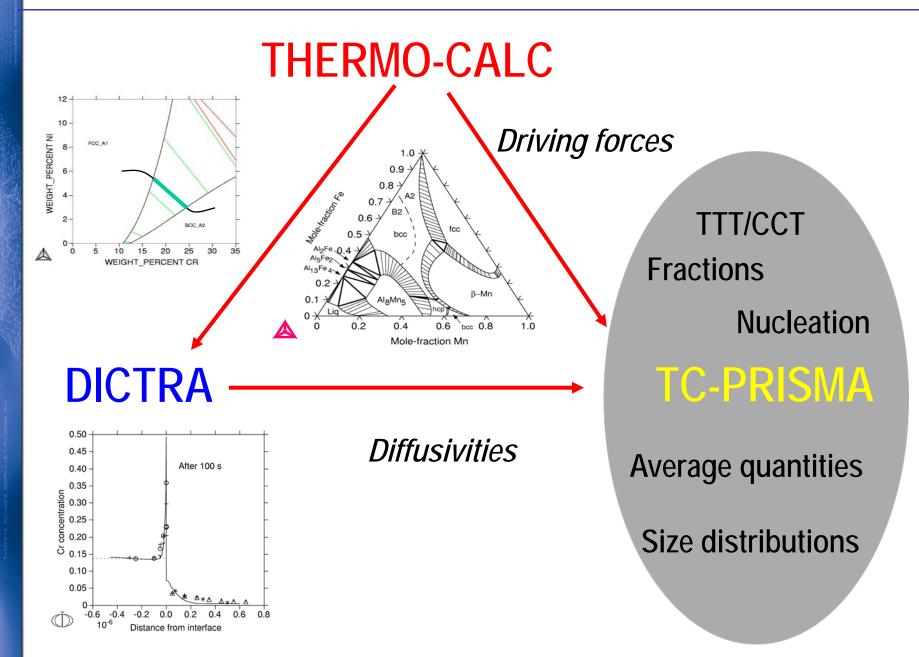


Microstructure

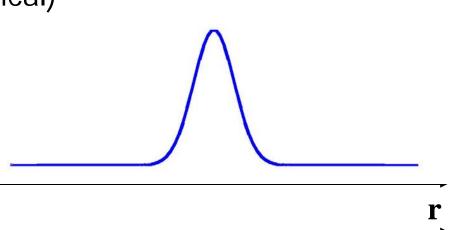
Processing


Background

Industrial Heat treatment


- Optimize processes
- Control the microstructure
- Tailor material properties

Background



Models: KWN

- Kampmann Wagner (Numerical)
- Nucleation, Growth and Coarsening

- Different size classes
- Temporal evolution of particle size distributions

Ν

$$\frac{\partial N_k}{\partial t} = -\frac{\partial (N_k v_k)}{\partial r} + j_k$$

Nucleation

Classical Nucleation Theory

$$j = Z\beta N e^{-\frac{\Delta G}{kT}} e^{-\frac{\tau}{t}}$$

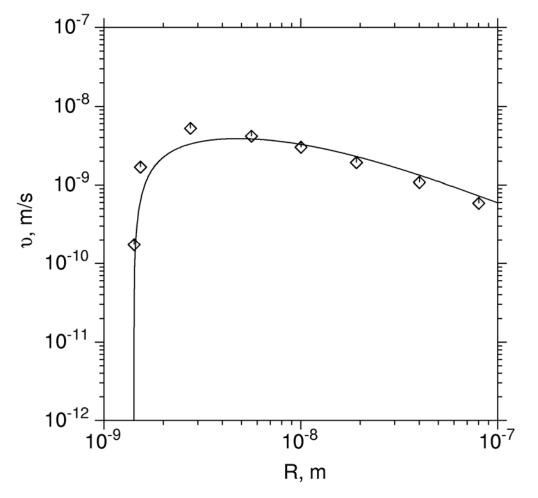
- Z Zeldovich factor
- N number of nucleation sites
- τ Incubation time

- β atomic attachment rate
- ΔG critical driving force for nucleation

Multicomponent effects (e.g. difference in diffusivities) are taken into account in $\boldsymbol{\beta}$

Do not consider diffusion inside precipitate (unlike DICTRA)

• Want a model capable of treating different growth modes such as **diffusion-controlled**, **interface-controlled**, or **mixed mode growth** without detailed solution of composition profile in multi-component matrix phase


•Large supersaturation, para-equilibrium, and NPLE can be taken into account

$$v(c_i^P - c_i^I) = c_i^I M_i (\mu_i^M - \mu_i^I) / \xi_i R$$
$$\mu_i^P = \mu_i^I$$

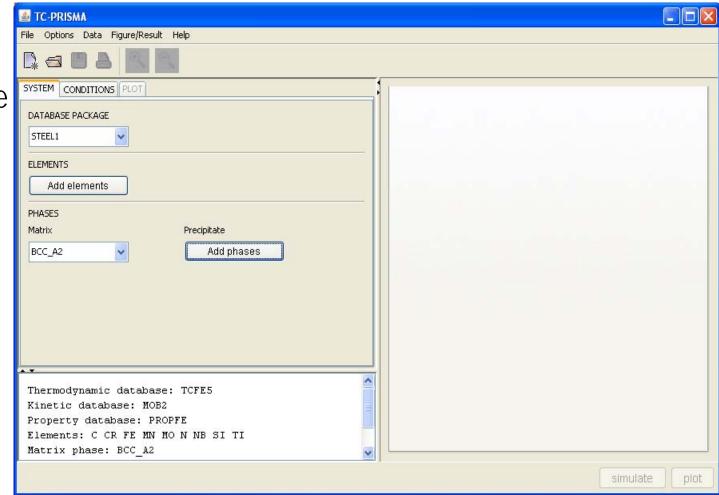
Q. Chen, J. Jeppsson, J. Ågren, Acta Mater. 2008;56:1890

Models: Growth rate (new model)

Fe-2%Cr-0.05%C, M23C6 from ferrite, local equilibrium, Cr-diffusion controlled

Q. Chen, J. Jeppsson, J. Ågren, Acta Mater. 2008;56:1890

TC-PRISMA


PReclpitation Simulations in MAterials

🛎 TC-PRISMA				
File Options Data Figure/Result Help				
SYSTEM CONDITIONS PLOT		1: Tempe	rature profile 🔺	×
◯ Single particle ⊙ Multi particle ◯ TTT/CCT diagram	-			
Temperature/Time Alloy composition Set profile C 0.2				
CR 1.1 mass-%			1000	
FE 94.7 mass-%			900	
MN 1.2 mass-%			800	
MO 1.1 mass-%		ប	700	
N .08 mass-%		e e	600	
NB 0.8 mass-% SI 0.7 mass-%		atu	(sources)	
TI 0.12 mass-%		per	500 -	College Taxs
11 0.12 11035 70		Temperature [C]	400	
Enable Nucleation Properties		<u> </u>	300 -	
			200 -	1 -
Precipitate present t=0 Properties	-		100 -	
Kinetic database: MOB2	-			
Property database: PROPFE			0	100 200 300 400 500 600
Elements: 0.2% C, 1.1% CR, 94.7% FE, 1.2% MN,				Time [s]
1.1% MO, .08% N, 0.8% NB, 0.7% SI, 0.12% TI				
Temperature: Own profile		-		
Simulation time: 550 [a]				
				simulate plot

Input data: System

-Databases -Elements -Matrix phase -Precipitates

- -Temperature profile
- -Composition
- -Nucleation properties
- -Initial size distribution

remperaturi	e Simulation time
Load File	
	Load
Profile	
time	temperature
0	25
30	900
300	900
305	500
335	500
340	900
370	900
375	500
405	500
435	900
465	900
550	25

- -Temperature profile
- -Composition
- -Nucleation properties
- -Initial size distribution

TC-PRISMA				
SYSTEM CONDITIONS PLOT Single particle Multi particle TTT/CCT diagram Temperature/Time Alloy composition Set profile C 0.2 R 1.1 mass-% FE 94.7 mass-% MN 1.2 mass-% MO 1.1 mass-% N 0.8 mass-% NB 0.8 mass-% SI 0.7 mass-% TI 0.12 mass-%	Temberature [C]	erature profile 900 800 700 600 7500	x	
Enable Nucleation Properties From the second se			1 100	200 300 400 500 600 Time [s]

- -Temperature profile
- -Composition
- -Nucleation properties
- -Initial size distribution

Precipitate			Cor	nposition o	f precipitate
CEMENTITE	~	1	С	1	mass-%
/olume fraction of precipita	ate 0.012		CR	1.1	mass-%
Normal distributed initi		-	FE	95,17	mass-%
			MN	1.1	mass-%
1ean value	7E-6	m	MO	0.8	mass-%
/ariance	1E-8	m	N	0.01	mass-%
Read from file			NB	0.8	mass-%
I teau nonnine			SI	0.01	mass-%
			TI	0.01	mass-%

- -Temperature profile
- -Composition
- -Nucleation properties
- -Initial size distribution

🕌 Nucleation					
Precipitate					
Automatic calculation of	the number of nu	cleation sites			
🔲 Bulk Nuclea	ation site density		m ⁻³		
🗹 Grain boundaries Matrix	grain radius	50E-6	m	Number of nucleation sites per m ³	
🔲 Grain corners Matrix	grain radius		m	Number of nucleation sites per m^3	
Dislocations Disloca	ation density		m ⁻²	Number of nucleation sites per m ³	
		Apply		ose	

Input data: Data

- -Interfacial energies
- -Molar Volumes
- -Interface mobilities
- -Poission Ratio
- -Bulk Modulus
- -Diffusional mobilities
- -Thermodynamic Data

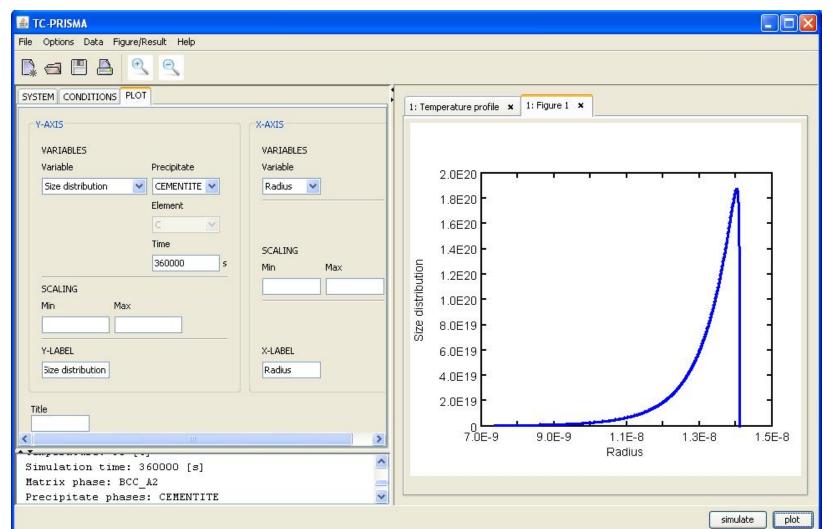
Property	Interfacial Energy	*	
Precipitate	CEMENTITE	~	
Interfacial mobility			m ⁴ /Js
Grain boundaries			J/m ²
Grain corners			J/m ²
Dislocations			J/m ²

Package name	Thermodynamic	database	Kinetic database		Property databas	e
STEEL1	TCFE6	¥	MOB2	*	PROPFE	
STEEL2	TCFE5	*	MOB2	~	USER	
	TCFE6	*	MOB2	*	PROPFE	

Calculates:

- TTT/CCT diagrams
- Temporal evolution of particles distributions
- Average particle radius as a function of time
- Phase fractions
- Average composition in precipitates and matrix
- Interfacial compositions for each particle size
- Nucleation rate
- Growth rate for each particle size
- Critical radius as a function of time
- User defined functions

Precipitation of cementite

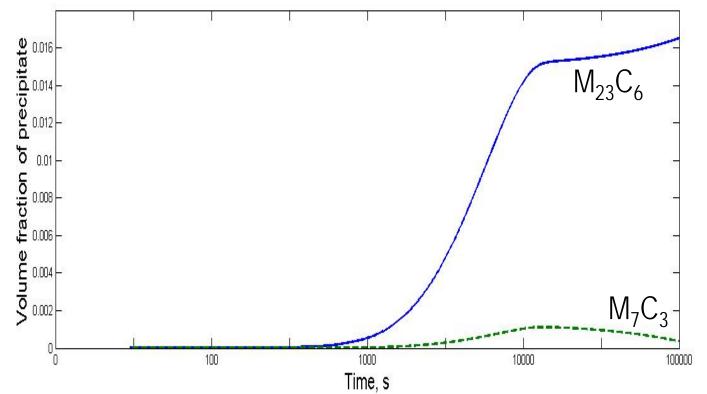


Calculation of volume fraction of cementite for low alloyed steel at 311K compared to experimental data

🕌 TC-PRISMA				
File Options Data Figure/Result Help				
SYSTEM CONDITIONS PLOT		1: Temperature profile 🛪	1: Figure 1 ×	
V-AXIS VARIABLES	X-AXIS			
Variable Precipitate Volume fraction CEMENTITE	Variable	0.0025	, , , , ,	
Element		0.0020 -		
Time	SCALING Min Max	Lugctio 0.0015 -	•	-
SCALING		e L		
Min Max		0.0010 - ∧	A	
Y-LABEL Volume fraction	X-LABEL	5.0E-4 -	(-
	······			
		Ŭ0	1000000 2000000	3000000 4000000
Simulation cime: Soudood [S]	~		Time [s]	
Matrix phase: BCC_A2				
Precipitate phases: CEMENTITE	~			
				simulate plot

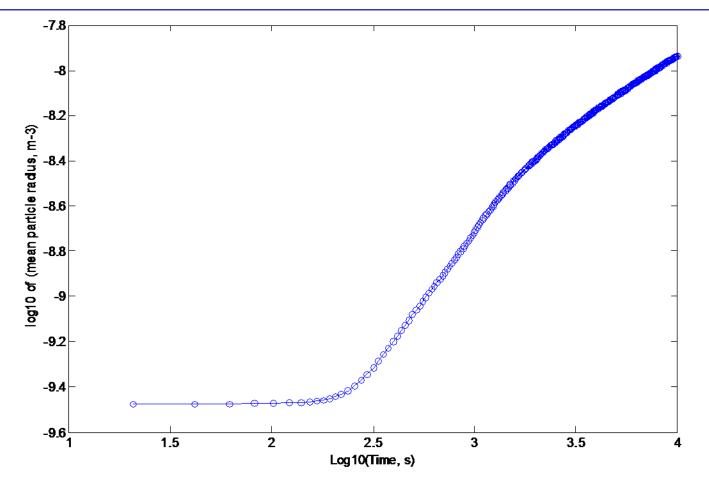
Precipitation of cementite

Calculation of size distribution of cementite particles for low alloyed steel at 311K after 100 hours



Precipitation of $M_{23}C_6$ and M_7C_3

Precipitation of M₂₃C₆ from ferrite in Fe-12%Cr-0.1%C at 1053K


 \sim Metastable M₇C₃ forms at the beginning and desolves

Similar calc by Inden and Schneider using DICTRA took days/hrs. This calc in TC-PRISMA on a timescale of minutes (and includes larger no. of particles.

Precipitation of M₂₃C₆ from austenite

Precipitation of M₂₃C₆ from austenite at 923 K in steel AISI316. Composition (wt%): Fe-0.05C-16Cr-1.5Mn-2.3Mo-11Ni-0.6Si. Benchmark calc: Takes approx. 30 minutes

Summary

- A new software tool for simulation of precipitation reactions in multicomponent, multiphase alloys, TC-PRISMA, is being developed by Thermo-Calc Software
- The KWN approach is taken, but a completely new model for the growth rate is applied
- Classical nucleation theory, but multicomponent effects are taken into account
- A new database containing interfacial energies for steels is under development