Notes on Diffusion Data in the Cu-In-Se System for Application in CIS photovoltaic cells

C. E. Campbell

May 2008

NIST, Metallurgy Division

Binaries in the Cu-In-Se System

- Cu-In binary system
 - 3 solution phases: liqud, fcc(Cu) and β (bcc)
 - 2 ordered phases: γ and η'
 - 3 stoichiometric phases: δ (Cu0.7In0.3), η (Cu0.64In0.36) and Cu_{11}In_9
- In-Se
 - 2 solution phases (Se and In)
 - 1 ionic liquid
 - 6 stoichiometric phases (In₄Se₃, InSe, In₆Se₇, In9Se11, In5Se7 and the polymorphic In₂Se₃ (α , β , γ ,and δ)
- Cu-Se
 - -2 solution phases fcc(Cu) and Se
 - 1ionic liquid
 - 3 stoichiometric compounds: Cu_{2-x}Se, Cu₃Se₂,CuSe and CuSe₂
 - Cu_{2-x}Se has 2 polymorphs (α and β)
 - CuSe has 3 polmorphs α -CuSe, β -CuSe and γ -CuSe
 - 1 ordered phase Cu_{2*}Se which has 2 polymorphs (α and β)
 - 3 sublattice model (Cu,Va)1(Se)1(Cu)1

Thermodynamics from W.K. Kim and J. Y. Shen and T. Anderson

Ternary Cu-In-Se

- 1 Ionic Liquid (Cu+1, In+3) (Se-2, Va, Se)
- α CulnSe₂ (Cu%,In,Va)(Cu,In%,Va)Se₂ (Chacopyrite)
- δ CulnSe₂ (Cu%,In,Va)₂ Se (Se,Va)₂ (Sphalerite)
- β Culn₃Se₅ (Cu%,In,Va) (Cu,In,Va)₃Se₅ (Defect Chacopyrite)
- $\gamma \text{ Culn}_5\text{Se}_8$ (Cu%,In,Va) (Cu,In%,Va)₅ Se₈
- Cu₂In (Cu,In)₂(Cu,In)(Se,Va)
- $\beta Cu_2 Se (Cu, Va) Se (Cu, In)$

Assume α -CulnSe₂ is composed of a cubic cation sublattice and a cubic anion sublattice.

Chalcopyrite CIGS structure

Thermodynamics from W.K. Kim and J. Y. Shen and T. Anderson

Processing of $\alpha\text{-CuInSe}$

- Co-Deposition of elements
- Annealing of stacked elemental layers
- Direct compound formation
- Selenization of metal particles

Reactions during Thermal Processing

- CuSe+InSe \rightarrow CuInSe₂
- $Cu_2Se+2InSe+Se \rightarrow 2CuInSe_2$
- $Cu_2Se+In_2Se_3 \rightarrow 2CuInSe_2$

(Herget et. al. J. Phys. Chem. Solids 66 (2005) 1903-1907.) Precursors Cu₁₁In₉ CuIn₂ CuSe₂ In₄Se₃ stacked elemental layers

Kim et al. J.Phys. Chem Solids. 66 (2005) 1915-1919:

 α -CuInSe₂ form from an In₂Se₃/CuSe bilayer precursor film.

Matsushita et al. J. Cryst. Growth 237-239 (2002) 1986-1992.

Chemical reactions occurring to synthesize a single phase

Cu+In+2In

(1) In, Se \rightarrow In₂Se, In₆Se₇ at 250C

(2) Cu,Se \rightarrow Cu₃Se₂, Cu₇Se₄ at 280-420C

(3) $In_2Se: solid \rightarrow liquid at 500C$

(4) InSe, In_6Se_7 : solid \rightarrow liquid at ~ 600 C

(5) In_2Se_3 : solid \rightarrow liquid at ~ 900 C

(6) Cu_7Se_4 , InSe, $In_2Se_3 \rightarrow CuInSe_2$ above 950 C

(7) CuInSe₂ (spalerite): solid \rightarrow liquid at 996 C

Reactions during Thermal Processing

- Culn+2Se
 - − $Cu_{1-x}In$ (x>0.5), Se → CuInSe₂, InSe at 520C
 - − $Cu_{1-x}In$ (x<0.5), Se InSe →CuInSe₂ at 575 C
 - − InSe: solid \rightarrow liquid at 650 C
 - − CuInSe₂: chalcopyrite \rightarrow spalerite at about 810 C
 - − CuSe, InSe \rightarrow CuInSe₂ above 950 C
 - − CulnSe₂ (spalerite) : solid \rightarrow liquid at 996 C.
- W. Kim (J. Crystal Growth, 294 (2006) 231-235
 - α -CuInSe₂ form by selenization by Cu-In precusor
- Other precusors noted $Cu_7 ln_3 \eta Cu_{16} ln_9 Cu_{11} ln_9$

Se Self-Diffusion

Se Crystal Structure: Trigonal (monoclinic)

First experiments by Boltaks and Plachenov 1957

- Used a hexagonal form of Se
- Performed tracer diffusivities experiments with Se⁷⁵ using sectioning methods

Brätter and Gobrecht (1970) measured lattice diffusion and short circuit diffusion for the self diffusion of Se in single crystals

Boltaks and Plachenov most likely measured a short-circuit diffusivity.

B. I.Boltaks and B. T. Plachenov, Zhur. Tekh. Fiz., 27 (1957) 2229. Brätter and Gobrecht, Self-Diffusion in Se, Phys. Stat. Solidi, 37 (1970) 869-78.

In Diffusion in Se

Akhundov (1958) used In¹¹⁴ to measure the In diffusion in Se in the 50 °C to 200 °C temperature range

Aknaundov concluded that the low activation energy indicated an interstitial diffusion mechanism. Mostly the measurements are of short-circuit diffusion mechanism (i.e. grain boundary diffusion).

G. A. Akhundov, Thesis (Author's abstract) Izd. Akad. Nauk AzSSR, 1958.

Diffusion in Cu

•V. A. Gorbachev et al. Fiz. Met. Metalloved 34 (1972) 879-83.
•P. H. Kreyns, The Diffusion of Radioactive Tracer Se⁷⁵ into Copper Single Crystal, (MS Thesis) U. Arizona, (1962).

Cu Diffusion in Cu₂Se

Measured by Hauffe (1955)

$$D_{Cu \to Cu_2 Se} = 3.5 \times 10^{-2} \exp\left(-\frac{29000}{RT}\right) cm^2 s^{-1}$$

Low activation energy indicates some type defect-controlled diffusion mechansim

Maymyko Pavlyuchenko and Pokrovskii (1972) studied Cu diffusion in Cu_{2-x} Se between 150 °C and 445° C.

$$D_{Cu \to Cu_2 Se} = 1.3 + 0.8 - 0.5 \times 10^{-4} \exp\left(-\frac{3130 \pm 600}{RT}\right) cm^2 s^{-1}$$
$$D_{Cu \to Cu_{1.8} Se} = 8.5 + 6.3 - 3.6 \times 10^{-4} \exp\left(-\frac{3960 \pm 600}{RT}\right) cm^2 s^{-1}$$

K. Hauffe, "Reaktionen in und an feston Stoffen." Berlin, 1955.

S. G. Maymyko, M.M. Pavlyuchenko and I.I.Pokrovskii, Dolk. Akad. Nauk.Beloruss. SSR 16 No 6 (1972) 521-3.

Diffusion in Cu_{2-x}Se (Cu,Va) (Cu,In) Se

Reinhold and Möhring (1937) measured the diffusivity of Cu^{+1} ions in Cu_{2-x} Se where 0.11 < x < 0.22.

$$D_{Cu^{+1} \to Cu_{2-x}Se} = 5.6 \times 10^{-4} \, cm^2 s^{-1} \text{ at } 723 \text{ K}$$
$$D_{Cu^{+1} \to Cu_{2-x}Se} = 0.2 \times 10^{-4} \, cm^2 s^{-1} \text{ at } 298 \text{ K}$$

The zincblende sublattice of β -Cu2Se. The cations and Se2 anions are each stacked like ABC along the /111S direction. Cu+: dark, Se2: bright balls.

Čelustka and Ogorelec measured the diffusion of vacancies in $Cu_{1.96}$ Se from 500 °C to 850 °C

$$D_{Va \to Cu_{2-x}Se} = 0.36 \exp\left(-\frac{34700}{RT}\right) cm^2 s^{-1}$$

Diffusion in Cu_xSe

Cu_2Se/In_2Se_3 Diffusion Couple at 550 °C for 1.5 h

CIS = CuInSe₂ β = defect chacopyrite (CuIn₃Se₅) γ = CuIn₅Se₈

Estimate of In diffusion in $Cu_2Se = 4.2x10^{-10} m^2/s$ Defect structure leads to rapid diffusion. In diffuses via an ionic lattice diffusion through the Cu vacancy sites on Cu_2Se

Park et. al., J. Appl. Phys. 87 (2000) 3683.

Mobility of Se in CIS

Activation Energy = 146,725 J/mole Frequency Factor = 0.01406 m²/s

The comparison of CIS growth rates between the DICTRA prediction (solid lines) and experiments (symbols).

W. K. Kim , U. Florida, PhD Thesis, 2006.

Interdiffusion in CuInSe₂

Tell and Bridenbaugh measured the interdiffusion in $CuInSe_2$ by measuring a junction depth as function of time.

$$\widetilde{D}_{CuInSe_2} = 5.5 \times 10^{-14} m^2 s^{-1}$$
 at 473 K
 $\widetilde{D}_{CuInSe_2} = 1.4 \times 10^{-14} m^2 s^{-1}$ at 573 K

Interdiffusion thought to occur either by

- Se vacancies acting as shallow donors
- Cu interstitials

Compare with Kim's functions

$$D_{Se \to CuInSe_2} = 8.8 \times 10^{-19} \ m^2 s^{-1} \text{ at } 473 \text{ K}$$

 $D_{Se \to CuInSe_2} = 5.9 \times 10^{-16} \ m^2 s^{-1} \text{ at } 573 \text{ K}$

Interdiffusion in CuInSe₂

Kim's work

- J. Phys. +Chem Solids, 2005. : $CuSe/In_2Se_3$ precursor
- CIS + Se (evaporated)

Are these schematics close to the microstructures we are trying model? Are the layers planar?

Activation energy 162 +/- 5 KJ/mol (parabolic model)

J. Crystal Growth , 2005. : Cu/In selenization

• CuSe +In + *n*Se (vapor) \rightarrow CuSe2 +In +*n*Se (vapor) \rightarrow CIS

Activation energy 124 +/- 19 kJ/mol (Avrami model); 100 +/- 14 kJ/mol parabolic

Kim's work

- Summary of reaction pathways and activation energies in J. Crystal Growth 2008, Table 2.
 - J. Crystal Growth, 2008. : GaSe/CuSe precursor • GaSe (amorph.) +1/2Cu_{2-x}Se+1/2Se →CGS

Interdiffusion in Cu_xAg_{1-x}InSe₂

Empty volume per unit cell at room temperature

Diffusion studies

- Djessas et. al. J. Appl. Phys. 95 (2004) 4111.
 - Studied interdiffusion of Cu, In, Ga diffuse through In₂Se₃/CuGaSe₂/SnO₂
 - Experimental setup
 - CuGaSe₂ layers grown using close-space vapor transport. Two different grain sizes
 - In₂Se₃ deposited by thermal evaporation on CuGaSe₂ at a low substrate temp.
 - Heterostructures annealed at different temperatures
 - Concentration profiles measured using SIMS
 - Results
 - Cu diffuses through CuGaSe₂ layer to the In₂Se₃
 - In diffues from In₂Se₃ through CuGaSe₂ to SnO₂
 - Cu diffusion in the In₂Se₃ layer is probably grain boundary diffusion
 - Cu and In diffusion away from In₂Se₃/CuGaSe₂ interface mostly likely grain boundary diffusion.

FIG. 1. Indium ~a!, gallium ^(c)b!, and copper ~c! SIMS concentration profiles in an In2Se3 /CuGaSe2 /SnO2 /glass type I structure annealed in vacuum for 20 min at different temperatures.

In and Ga diffusion coefficients at a $In_2Se_3/CuGaSe_2$ interface

FIG. 2. In and Ga diffusion coefficients in terms of the reciprocal temperature.

Djessas et. al. J. Appl. Phys. 95 (2004) 4111

Diffusion notes

- J. Djordjevic, J. Crystal. Growth 294 (2006) 218-230.
 - Vapor selenization of Cu layers

• Cu diffusion coefficient in Cu_{2-x} Se is orders of magnitude higher than Se in $CuInSe_4$

- Rate determining step is surface reaction and not Cu diffusion
- In selenization
 - •Control by In diffusion through layers $In_4Se_3 \rightarrow InSe \rightarrow In_2Se_3$
 - Se incorporated at the surface of the growing film
- •CuInSe₂ from Cu_{xI}n precursors: two reaction paths depending on Cu/In
 - In diffusion into Cu_{2-x}Se
 - reaction of InSe and Cu_{2-x}Se
- Diffusion data by Lyubormirsky, Dagen and Klenfeld all indicate some dependence on
 Ionic conductivity (concentration and mobility)
 - p vs n conductor
- Diffusion measurements dependent on type measurement made: (Lybormirsky et al. 1998) -- need watch out when using published data.
 - Tracer diffusion measurements (concentration gradient)
 - p-n junction methods (~ two order of magnitude higher than tracer diffusion)
 - Potentiostatic current decay method (higher than p-n junction) methods

Diffusion Notes

- F. Herget et. al. (Phys. Stat. Sol. A 203 (2006) 2615.) Chemical solid-state reactions promoted by epitaxy.
 - Need epitaxial relation to exist, for ion diffusion to start.
 - If a redox reaction is energetically favorable, it will occur as a 2nd step. (electron exchange must occur first)
 - Ion diffusion is easier if one structure is ion conductive
 - CuSe+ GaSe \rightarrow CuGaSe₂
 - Assuming the anion sublattices of all 3 compounds are equal, then only have cations redistribute via interdiffusion.
 - Cation radii << anion radii, so diffusion is relative fast.
 - $1/2\beta$ -Cu₂Se +InSe +1/2Se(liq) \rightarrow CuInSe₂ Reaction C (SEL) of (Hergert et al. J. Solid State Chem. 179 (2006) 2394.)
 - Driven by In⁺³ diffusion

How to Proceed??

- Diffusion in solid solutions \checkmark
- Diffusion in stoichiometric phases: binaries ok, but need data
- Diffusion in ternary compound phases
 - α CuInSe₂ (Cu%,In,Va)(Cu,In%,Va)Se₂ (Chacopyrite) ????
 - Are the current thermodynamics adequate to deal with the diffusion accurately?? Some question about needing to treat the charged species?