

Development of A Practical Phase Field Tool

Kaisheng Wu, Shuanglin Chen, Fan Zhang and Y.A.Chang

CompuTherm LLC, Madison, WI

Ximiao Pan and Yunzhi Wang

The Ohio State University, Columbus, OH

NIST Diffusion Workshop, May 12, 2008

Interdiffusion Microstructures

Ni-Al-Cr

IN718 (S. Azadian et al.)

Disk alloy (courtesy of M.F. Henry)

Models/Software

≻1D Diffusion

- ✓ DICTRA
- > Mean-Field Precipitation
 - ✓ PrecipiCalc
 - ✓ PanPrecipitation (PanSTAR)
 - ✓ TC-PRISMA

- > Phase Field Most Feasible for Morphology Considerations
 - ✓ MICRESS

✓ PanROME

Modeling Challenges

- Multi-component, multi-phase, multi-variant and polycrystalline
- Very complex microstructural features:
 - ✓ high volume fraction of precipitates
 - \checkmark non-spherical shape and strong spatial correlation
 - \checkmark elastic interactions among precipitates
- Interdiffusion induces both microstructure and phase instabilities.
- Effect of concentration gradient on nucleation, growth and coarsening.
- Roles of defects and coherency/thermal stress on interdiffusion and phase transformation.
- Robustness and computational efficiency of models.

Phase Field Approach

$$\frac{\partial c(\vec{r},t)}{\partial t} = \nabla \left[M \nabla \frac{\delta F}{\delta c(\vec{r},t)} \right]$$

$$\frac{\partial \eta(\vec{r},t)}{\partial t} = -L \frac{\delta F}{\delta \eta(\vec{r},t)}$$

$$F(c,\phi) = \int_{\Omega} \left[f(c,\phi) + \frac{1}{2} \epsilon^2 (\nabla \phi)^2 + \dots \right] d\Omega$$

Phase Field Models

- >Wheeler-Boettinger-McFadden(WBM)
 - ✓ Phys. Review A, 45(10), 7424(1992)
- > MICRESS
 - ✓ Steinbach et al., *Physica D*, 94, 135(1996)
- Landau-Type Polynomial
 - ✓ L.Q.Chen and Y. Wang, JOM, 48, 13-18(1996)
- Kim-Kim-Suzuki(KKS)
 - ✓ Phys. Review E, 60(6), 7186(1999)

Local Free Energy Density

$$f(c,\phi) = h(\phi)f^{S}(c_{S}) + [1 - h(\phi)]f^{L}(c_{L}) + g(\phi)$$
$$h(\phi) = \phi^{3} (6\phi^{2} - 15\phi + 10)$$
$$g(\phi) = \omega\phi^{2} (1 - \phi)^{2}$$

Kim-Kim-Suzuki(KKS) Model

Mass Conservation

$$c = h(\phi)c_S + [1 - h(\phi)]c_L$$

Equal Diffusion Potential

$$f_{c_S}^S [c_S(x,t)] = f_{c_L}^L [c_L(x,t)]$$

Advantage of KKS Model

Software Architecture

*C.Shen, Ph.D. Thesis, The Ohio State University, 2004;

Y.H. Wen et al., Acta Mater., 51, 1123(2003)

Ni Databases

* Partly from C. E. Campbell, W. J. Boettinger, U. R. Kattner, Acta Mater. 50, 2002, 775-792.

Coarsening

Nucleation

Ni-Al-Cr

Landau-Type Polynomial

Kim-Kim-Suzuki Model

*J.A.Nesbitt and R.W.Heckel, Metall. Trans. A, 18A(11)2087(1987)

Software

- \succ Coded in C++ & provided as a Windows dll
- Script file for user inputs
- ImageMagick for microstructure images
- Pandat GUI under development

Computational Efficiency

- A special algorithm/data structure is designed to improve the efficiency
- ➢ Benchmark:
 - ✓ Computer : Intel Core2 Duo CPU 3.0GHz, 3G Memory
 - System: Ni-Al-Cr, β+γ/γ diffusion couple, 1024×256 grid points, 300hrs annealing time at 1200°C

Simulation Time : 24 hrs

Summary

- A phase field program for interdiffusion microstructures
- Introduction of Kim-Kim-Suzuki model to relax the restriction of the length scale
- Examples demonstrating feasibilities
- Computational efficiency

Future Work

More Validations

Non-isothermal conditions
Multiphase systems
More than 4 components
Different alloy systems

Future Work

More Functionalities

- Interfacial energy anisotropy
- Elastic strain energy effect

Future Work

More Boundary Conditions

CVD ProcessingOxidation (Integrated with COSP)

