

UNIVERSITY OF CENTRAL FLORIDA

FROM PROMISE TO PROMINENCE CELEBRATING 40 YEARS

U-Mo/AI Alloys Diffusion Couples: Fuel/Cladding Interactions

E. Perez¹, Y.H. Sohn¹, D.D.Keiser²

¹Advanced Materials Processing and Analysis Center Department of Mechanical, Materials and Aerospace Engineering University of Central Florida, Orlando, Fl

²Idaho National Laboratory, Idaho Falls, ID

Financial Support by USDOE (DE-AC07-05ID14517) Subcontract No. 0051953 Administered by Battelle Energy Alliance, LLC and Idaho National Laboratory

NIST Diffusion Workshop May 12, 2008

Objectives

S To examine the growth and composition of the intermetallic compound layers that develop in U-Mo/Al system though diffusion couple experiments.

Examine the phase development of the Al-rich UMoAl ternary systems based on cast alloys with nominal compositions of 85.7Al-11.44U-2.86Mo, 87.5Al-10U-2.5Mo (at%).

Research Test Reactors

- U-Mo dispersion/monolithic fuels in Al-alloys matrix are being developed to fulfill the requirements of low enriched uranium in research reactors under the Reduced Enrichment for Research Test Reactors (RERTR) program.
 - Experiments can be loaded into the reactor and exposed to high radiation levels. Higher than typical power generation reactors.

Reactor Fuel Systems

Dispersion Fuel Plate

Dispersion and monolithic fuel system designs are being considered.

UMo particles are dispersed in an Al matrix.

UMo foil cladding between Al-alloy sheets.

Solution States Show Promising Results due to their high uranium density.

Motivation

- Dispersion and monolithic fuels in research test reactors suffer from detrimental interactions between the UMo fuel and AI matrix that lead to premature failure of the fuel systems.
 - Interaction zones develop complex multiphase microstructures.
 - Volumetric expansion takes place due to difference in the densities of the intermetallic phases.
 - The intermetallic phases have lower thermal conductivities than the fuel or the Al-matrix.

Review: U-10Mo vs. Al Diffusion Couple (600°C, 24hr)

*Intermetallic average composition

Review: Composition Dependent Growth Kinetics of Intermetallic Phases at 550°C

 The thickness of intermetallic layer increases with increasing concentration of Mo in the UMo alloy.

Review: Composition Dependent Growth Kinetics of Intermetallic Phases at 550°C

U-12Mo

AI-5Si

(U,Mo)(AI,Si)

U-12Mo

50um

• The thickness of intermetallic layer in the couples with Al-Si alloys is an order of magnitude smaller than that with pure Al.

Experimental Details - Facilities

Experimental Details

- Alloys with nominal compositions <u>85.7AI-11.44U-2.86Mo</u> and <u>87.5AI-10U-2.5Mo</u> (at.%) were by arc melting of high purity AI, U and Mo.
 - The alloys were re-melted three times to ensure homogenization.
 - The alloys were then annealed at 500°C for 200 hours.
- Analysis of phase constituents and microstructure:
 - Similar Section (θ-2θ)
 - Scanning Electron Microscopy:
 Backscatter Electron Microscopy
 - Energy Dispersive Spectroscopy
 - Transmission Electron Microscopy and Scanning TEM:
 - Site-Specific Specimen Preparation via Focused Ion Beam In-Situ Lift-Out (FIB-INLO)
 - High Angle Annular Dark Field (HAADF) Imaging
 - Selected Area Diffraction

Experimental Details

- Solid-Solid diffusion couples were assembled using U-7Mo, U-10Mo and U-12Mo with pure AI (99.999%), and were heat-treated in Ar-atmosphere at 600°C for 24 hours.
- Diffusion couple alloys were sectioned, polished and assembled under a controlled Ar atmosphere in a glove box.
- Prior to assembly, the AI was treated with concentrated nitric acid to dissolve the AI₂O₃ surface layer.
- Diffusion couples were encapsulated in quartz capsule in Ar atmosphere after Argon flush for heat treatment. Ta foil was placed in the capsule as an oxygen trap.
- Diffusion anneal performed using a Lindberg/Blue 3-Zone horizontal tube furnace.
- Diffusion microstructures structures examined by:
 - Scanning Electron Microscopy:
 - Backscatter Electron Microscopy
 - Energy Dispersive Spectroscopy
 - Transmission Electron Microscopy and Scanning TEM:
 - Site-Specific Specimen Preparation via Focused Ion Beam In-Situ Lift-Out (FIB-INLO)
 - High Angle Annular Dark Field (HAADF) Imaging
 - Selected Area Diffraction

Cast 85.7AI-11.44U-2.86Mo and 87.5AI-10U-2.5Mo (at%) Ternary Alloys

- Four phases were observed in bulk alloys via SEM/BEI: Phase equilibrium was not obtained, or cooling effects may be present.
- A fifth phase (UAI₃) was found in very small quantities in the 85.7AI-11.44U-2.86Mo alloy.

TEM Analysis of the 85.7Al-11.44U-2.86Mo Alloy

- In the bulk of the alloys, the TEM electron diffraction showed the presence of:
 - Al solid solution
 cF4
 - UAI₄ with little solubility for Mo
 ol20 Imma
 - U₆Mo₄Al₄₃ ∳ hP106 P63/mcm
 - ▶ UMo₂Al₂₀ ◎ cF184 Fd3m

TEM Analysis of the 85.7Al-11.44U-2.86Mo Alloy

Sector Strain Strain

TEM Analysis of the 87.5Al-10U-2.5Mo Alloy

The data from the 85.7Al-11.44U-2.86Mo alloy was used to identify the phases on this alloy.

Al solid solution
 UAl₄ with little solubility for Mo

The UAl₃ Phase was not observed in this alloy.

XRD Analysis of UMoAl alloys

- The phases observed by XRD in 85.7AI-11.44U-2.86Mo and 87.5AI-10U-2.5Mo alloys were:
 - Solution AI_4 , $U_4Mo_6AI_{43}$ and UMo_2AI_{20} .
 - The UAl₃ phase volume fraction in the alloys was very small and not detectable by XRD.
- XRD of the alloys confirmed the presence of the phases found by TEM electron diffraction.

Diffusion Couples Annealed at 600°C for 24 Hours

Layer Thickness: 265µm

U-7Mo vs. AI 600°C 24hr 70X BSE

Layer Thickness: 542µm

U-10Mo vs. Al 600°C 24hr 70X BSE

500µm

500μm

U-12Mo vs. AI 600°C 24hr 70X BSE

Layer Thickness: 352µm

Diffusion Couples Typical Microstructural Development

Typical Microstructure:

- Two-Phase regions composed of intermetallic phases
- High U-phase at the UMo/Intermetallic 6 interface

Ð

10µm

U-10Mo vs. Al

Electron diffraction

Phase Between UMo and Intermetallic Zone

Electron diffraction patterns have been collected on selected areas of the U-10Mo vs. Al diffusion couple annealed at 600°C for 24 hours.

U-10Mo vs. AI HAADF and EDX 600°C 24hr UMo/Intermetallic Interface

Sector EDX compositional analysis identifies a Usolid solution depleted of Mo.

Energy (keV)

U-10Mo vs. AI HAADF and EDX 600°C 24hr Center of Interaction Zone

Sased on the development of ternary UMoAI alloys, the phases found by EDX may be the UMo₂AI₂₀ and the U₆Mo₄AI_{43.}

U-10Mo vs. Al 600C 24 hr Diffusion Couple Selected Area Electron Diffraction

U-10Mo vs. AI 600°C 24hr Polycrystalline Electron Diffraction Pattern

Due to the small grain size of the developed phases, polycrystalline electron diffraction patterns were collected on the center of the interaction zone.

Summary

Alloys with nominal compositions 85.7Al-11.44U-2.86Mo and 87.5Al-10U-2.5Mo (at.%) have been examined using XRD, SEM/EDS and TEM/STEM for identification of phase constituents and analysis of the microstructures.

The fcc Al solid solution, cubic-UAl₃, orthorhombic-UAl₄, hexagonal-U₆Mo₄Al₄₃ and diamond cubic-UMo₂Al₂₀ phases were observed.

Solution States of U-7, U-10 and U-12Mo vs. All were assembled and annealed at 600°C for 24 hours for detailed characterization of the phases that develop in the interaction zones.

Acknowledgments

This work was financially supported by Idaho National Laboratory (Contract No. 00051953) under the operation of U.S. Department of Energy – Battelle Energy Alliance, LLC (DE-AC07-05ID14517). Additional financial support from CAREER Award of National Science Foundation (DMR-0238356) is gratefully acknowledged.