MODELING DIFFUSION MOBILITIES IN THE L12 AND B2 PHASES

C. E. Campbell

NIST Gaithersburg, MD

May 14, 2007

Microstructure Evolution

Kim and Walter, Mater. Sci. Eng. A360 (2003) 7.

Need to calculate multicomponent diffusion simulations: $\gamma/B2 \longrightarrow \gamma/\gamma /B2$

γ+γ / B2+γ γ+γ /γ /B2+γ

Ni-Al System

➢ Ni-Al Assessment from Ansara et al. (1997).

 γ' (Ni₃Al): L1₂ base structure; metal sublattice contains a connected network for nearest neighbor jumps for vacancies

B2 (NiAl) CsCl structure: metal sublattice requires jumps between different sublattices.

Effect of chemical ordering on diffusion

$$M_{i} = \frac{M_{i}^{\circ}}{RT} \exp\left(\frac{-\Delta Q_{i}}{RT}\right) \text{ where } \Delta Q_{i} = f(c_{i},T) \text{ and } M_{i}^{\circ} = f(c_{i},T)$$

• Based on Bragg-Williams approach by Girifalco for a binary system (*J. Phys. Chem. Solids*, 1964, **24**, 323.)

 $\Delta Q_k = \Delta Q_k^{dis} \left[1 + \alpha_k \left(S^{ord} \right)^2 \right] \qquad S^{ord} = p_A^{\alpha} - p_A^{\beta} = \text{long-range order parameter}$

 p_A^{α} is the probability of finding A atom on an α site

• Expansion to Multicomponent systems Helander and Ågren, (Acta Mater., 1999, 47, 1141.)

$$\Delta Q = \Delta Q^{\text{dis}} + \Delta Q^{\text{ord}}$$
$$\Delta Q_{l}^{ord} = \sum_{i} \sum_{j} \Delta Q_{i:j}^{ord} \left[y_{i}^{\alpha} y_{j}^{\beta} - x_{i} x_{j} \right]$$
$$+ \sum_{i} \sum_{j} \sum_{k} \Delta Q_{ij:k}^{ord} \left[y_{i}^{\alpha} y_{j}^{\alpha} y_{k}^{\beta} - x_{i} x_{j} x_{k} \right]$$
$$+ \sum_{i} \sum_{j} \sum_{k} \Delta Q_{k:ij}^{ord} \left[y_{i}^{\beta} y_{j}^{\beta} y_{k}^{\alpha} - x_{i} x_{j} x_{k} \right]$$

 ΔQ_{ij}^{ord} = contribution to activation energy for component *k* as a result of the ordering of *i*-*j* atoms

$$y_i^{\alpha} = \frac{N_i^{\alpha}}{N_{tot}^{\alpha}} = p_i^{\alpha}$$

Before assessing the diffusion mobilities need consider thermodynamics

DICTRA

- If one uses Ni-Data (Thermotech) Convert γ and B2
- If one uses a database based Ni-AI by Dupin et. al. Convert B2
- ✓ Can convert phase descriptions to a MSL description (Dupin et al.)
 - only works if element does not have a stable BCC phase

Phase Field

 Thermodynamics do not necessarily need to match diffusion description, depends on model used

Assessment of diffusion in NiAl

- B2 (Ni,Cr)AI (Ni,AI,Cr,Va:AI,Ni,Cr,Va)
- Thermodynamics from N. Dupin, I. Ansara, B. Sundman, CALPHAD, 25, (2001) 279-298

Disorder description fixed Engstrom and Ågren assessment 1996

$$M_{i} = \frac{M_{i}^{\circ}}{RT} \exp\left(\frac{-\Delta Q_{i}^{*}}{RT}\right) \text{ where } \Delta Q_{i}^{*} = f(c_{i}, T)$$

Disorder Description

$$\Delta Q_{Ni}^{*} = x_{Ni}Q_{Ni}^{Ni} + x_{Al}Q_{Al}^{Ni} + x_{Cr}Q_{Cr}^{Ni} + x_{Al}x_{Ni}Q_{Al,Ni}^{Ni} + x_{Cr}x_{Ni}Q_{Cr,Ni}^{Ni}$$

$$\Delta Q_{Al}^{*} = x_{Ni}Q_{Ni}^{Al} + x_{Al}Q_{Al}^{Al} + x_{Cr}Q_{Cr}^{Al} + x_{Al}x_{Ni}Q_{Al,Ni}^{Al}$$

$$\Delta Q_{Cr}^{*} = x_{Ni}Q_{Ni}^{Cr} + x_{Al}Q_{Al}^{Cr} + x_{Cr}Q_{Cr}^{Cr} + x_{Cr}x_{Ni}Q_{Cr,Ni}^{Cr}$$

Assessment of diffusion in NiAl

- B2 (Ni,Cr)Al (Ni,Al,Cr,Va:Al,Ni,Cr,Va)
- Thermodynamics from N. Dupin, I. Ansara, B. Sundman, CALPHAD, 25, (2001) 279-298

Disorder description fixed Engstrom and Ågren assessment 1996

$$M_{i} = \frac{M_{i}^{\circ}}{RT} \exp\left(\frac{-\Delta Q_{i}^{*}}{RT}\right) \text{ where } \Delta Q_{i}^{*} = f(c_{i}, T)$$

Order Description

$$\Delta Q_{Ni}^{ord} = \Delta Q_{Al:Ni}^{ord} \left[y_{Al}^{Ni} y_{Ni}^{Al} - x_{Al} x_{Ni} \right] + \Delta Q_{Ni:Al}^{ord} \left[y_{Ni}^{Ni} y_{Al}^{Al} - x_{Al} x_{Ni} \right] + \Delta Q_{Al:Va}^{ord} \left[y_{Al}^{Ni} y_{Va}^{Al} - x_{Al} x_{Va} \right] + \Delta Q_{Va:Al}^{ord} \left[y_{Va}^{Ni} y_{Al}^{Al} - x_{Va} x_{Al} \right] + \Delta Q_{Ni:Va}^{ord} \left[y_{Ni}^{Ni} y_{Va}^{Al} - x_{Ni} x_{Va} \right] + \Delta Q_{Va:Ni}^{ord} \left[y_{Ni}^{Ni} y_{Va}^{Al} - x_{Va} x_{Ni} \right] + \Delta Q_{Al:Cr}^{ord} \left[y_{Ni}^{Ni} y_{Va}^{Al} - x_{Ni} x_{Cr} \right] + \Delta Q_{Va:Ni}^{ord} \left[y_{Ni}^{Ni} y_{Va}^{Al} - x_{Al} x_{Cr} \right] + \Delta Q_{Cr:Va}^{ord} \left[y_{Cr}^{Ni} y_{Va}^{Al} - x_{Cr} x_{Va} \right] + \Delta Q_{Va:Cr}^{ord} \left[y_{Va}^{Ni} y_{Cr}^{Al} - x_{Va} x_{Cr} \right] + \Delta Q_{Cr:Ni}^{ord} \left[y_{Cr}^{Ni} y_{Ni}^{Al} - x_{Cr} x_{Ni} \right] + \Delta Q_{Ni:Cr}^{ord} \left[y_{Ni}^{Ni} y_{Cr}^{Al} - x_{Cr} x_{Ni} \right]$$

Assessed Mobility Parameters for B2 - NiAlCr

Mobility Parameters	Value
Ni	
$\Delta Q_{Ni:Al} = \Delta Q_{Ni:Al} = \Delta Q_{Cr:Al} = \Delta Q_{Cr:Al}$	-336810
$\Delta Q_{Al:Va} = \Delta Q_{Va:Al}$	-115600
$\Delta Q_{Ni:Cr} = \Delta Q_{Ni:Cr}$	-255690
Al	
$\Delta Q_{Ni:Al} = \Delta Q_{Ni:Al} = \Delta Q_{Cr:Al} = \Delta Q_{Cr:Al}$	-360140
$\Delta Q_{Al:Va} = \Delta Q_{Va:Al}$	+305900
$\Delta Q_{Ni:Cr} = \Delta Q_{Ni:Cr}$	-6220700
Cr	
$\Delta Q_{Ni:Al} = \Delta Q_{Ni:Al} = \Delta Q_{Cr:Al} = \Delta Q_{Cr:Al}$	-336810
$\Delta Q_{Al:Va} = \Delta Q_{Va:Al}$	-115600
$\Delta Q_{Ni:Cr} = \Delta Q_{Ni:Cr}$	1148100

Composition and Temperature Dependence of B2 Interdiffusion Coefficient

Composition Dependence of B2 Interdiffusion Activation Energy

Self Diffusion of Ni in NiAl

Assessment of diffusion mobilities in Ni₃Al

L1₂ (Ni₃Al) (Ni,Al:Ni,Al)

Disorder description fixed Engstrom and Ågren assessment 1996

$$M_{i} = \frac{M_{i}^{\circ}}{RT} \exp\left(\frac{-\Delta Q_{i}^{*}}{RT}\right) \text{ where } \Delta Q_{i}^{*} = f(c_{i}, T)$$

$$\Delta Q_{Ni}^{*} = x_{Ni}Q_{Ni}^{Ni} + x_{Al}Q_{Al}^{Ni} + x_{Cr}Q_{Cr}^{Ni} + x_{Al}x_{Cr}Q_{Al,Cr}^{Ni} + x_{Cr}x_{Ni}Q_{Cr,Ni}^{Ni}$$

$$\Delta Q_{Al}^{*} = x_{Ni}Q_{Ni}^{Al} + x_{Al}Q_{Al}^{Al} + x_{Cr}Q_{Cr}^{Al} + x_{Al}x_{Ni}Q_{Al,Ni}^{Ni} + x_{Cr}x_{Ni}Q_{Cr,Ni}^{Al}$$

$$\Delta Q_{Cr}^{*} = x_{Ni}Q_{Ni}^{Cr} + x_{Al}Q_{Al}^{Cr} + x_{Cr}Q_{Cr}^{Cr} + x_{Al}x_{Ni}Q_{Al,Ni}^{Cr} + x_{Al}x_{Cr}Q_{Al,Cr}^{Cr} + x_{Cr}x_{Ni}Q_{Cr,Ni}^{Cr}$$

 $\begin{aligned} & \Delta Q_{Ni}^{ord} = \Delta Q_{Al:Ni}^{ord} \left[y_{Al}^{Ni} y_{Ni}^{Al} - x_{Al} x_{Ni} \right] + \Delta Q_{Ni:Al}^{ord} \left[y_{Ni}^{Ni} y_{Al}^{Al} - x_{Al} x_{Ni} \right] \\ & + \overline{\Delta Q_{Al:Cr}^{ord}} \left[y_{Al}^{Ni} y_{Cr}^{Al} - x_{Al} x_{Cr} \right] + \overline{\Delta Q_{Cr:Al}^{ord}} \left[y_{Cr}^{Ni} y_{Al}^{Al} - x_{Al} x_{Cr} \right] \\ & \Delta Q_{Cr:Ni}^{ord} \left[y_{Cr}^{Ni} y_{Ni}^{Al} - x_{Cr} x_{Ni} \right] + \Delta Q_{Ni:Cr}^{ord} \left[y_{Ni}^{Ni} y_{Cr}^{Al} - x_{Ni} x_{Cr} \right] \\ & + \overline{\Delta Q_{Al,Ni:Al}^{ord}} \left[y_{Al}^{Ni} y_{Ni}^{Ni} y_{Al}^{Al} - x_{Al} x_{Ni} x_{Al} \right] + \Delta Q_{Al:Al,Ni}^{ord} \left[y_{Al}^{Ni} y_{Ni}^{Al} y_{Al}^{Al} - x_{Al} x_{Al} x_{Ni} \right] \\ & + \Delta Q_{Al,Ni:Ni}^{ord} \left[y_{Al}^{Ni} y_{Ni}^{Ni} y_{Al}^{Al} - x_{Al} x_{Ni} x_{Ni} \right] + \Delta Q_{Ni:Al,Ni}^{ord} \left[y_{Ni}^{Ni} y_{Ni}^{Al} - x_{Ni} x_{Al} x_{Ni} \right] \end{aligned}$

Assessed Mobility Parameters of Ni₃Al

Mobility Parameters	Value
Ni	
$\Delta Q_{Ni:Al} = \Delta Q_{Ni:Al} = \Delta Q_{Cr:Al} = \Delta Q_{Cr:Al} = \Delta Q_{Cr:Ni} = \Delta Q_{Cr:Ni}$	-101530-23.6*T
$\Delta Q_{Al,Ni:Al}^{ord} = \Delta Q_{Al:Al,Ni}^{ord}$	-311700
$\Delta Q_{Al,Ni:Al}^{ord} = \Delta Q_{Al:Al,Ni}^{ord}$	-24870
Al	
$\Delta Q_{Ni:Al} = \Delta Q_{Ni:Al} = \Delta Q_{Cr:Al} = \Delta Q_{Cr:Al} = \Delta Q_{Cr:Ni} = \Delta Q_{Cr:Ni}$	78533-59.1*T
$\Delta Q_{Al,Ni:Al}^{ord} = \Delta Q_{Al:Al,Ni}^{ord}$	869000
$\Delta Q_{Al,Ni:Al}^{ord} = \Delta Q_{Al:Al,Ni}^{ord}$	-127130
Cr	
$\Delta Q_{Ni:Al} = \Delta Q_{Ni:Al}$	-36844
$\Delta Q_{Cr:Al} = \Delta Q_{Cr:Al} = \Delta Q_{Cr:Ni} = \Delta Q_{Cr:Ni}$	-101530-23.6*T

Temperature and Composition Dependence of Ni Tracer Diffusivity in γ $\hat{\gamma}$

B2 Diffusion Couple at 1200 °C for 40 h Ni-35.5Al-3.7Cr at. % / Ni-33.5Al-5.7 Cr at. %

Hopfe, Son, Morral, Romig, Diffusion in Ordered Alloys, TMS (1993) 69.

Diffusion Coefficient Composition Dependence in the Ni-Al system at 1200 °C

Effect of Cr addition Ni-48Al (at.%) at 1200 °C on Diffusivities in the B2 phase

γ/B2 Diffusion Couple Ni-40Al-5Cr/Ni-15Al-20Cr at. %

Test: B2/Ni Simulation

Experimental data from J-C Zhao, GE-CRD

Does the Thermodynamic Database Make a Difference?

Ultimate Goal

E. Perez, T. Patterson, Y. Sohn, J. Phase Equil. Diff., 27 (2006) 659.