Diffusion Workshop at NIST, May, 14-15, 2007

The kinetic pathway of coarsening morphology of a Ni-Al-Cr alloy by Lattice Kinetic Monte Carlo simulation

Zugang Mao¹, Georges Martin^{1,2} and David N. Seidman¹ Department of Materials Science ¹Northwestern University, ²CEA, Paris, FRANCE

UNIVERSITY

Coherent Phase Transformations with atomic resolution

Quantitative with good statistics & qualitative features

Ni- 5.24 Al-14.24 Cr at. % at 600°C (Sudbrack, Seidman et al. 2004)

Necked precipitates; density peaks at $\approx 30\%$ at ≈ 4 hours Misfit $\approx 6 \quad 10^{-4}$

Nothing but vacancy jumps

Kinetic Monte Carlo & Residence time algorithm

$$N_{sites} = N_A + N_B + 1_V$$

 $N_{chan} \approx Z$ channels out of {i}

$$\tau_{i} = \left(\sum_{j=1}^{N_{chan}} \Gamma_{ij}\right)^{-1}$$

$$P(j, t + \tau_{i}; i, t) = \Gamma_{ij} \times \tau_{i}$$

$$t = t + \tau_{i}$$
Physical time (C_v)

Set of attempt frequencies Γ_{ij} ?

The jump frequency of a vacancy is:

$$\Gamma_{ij} = v_j \exp(-\Delta E_a / k_B T)$$
$$\Delta E_a = E_{sp} - E_j$$

The configurational energy:

$$E_{j} = \sum_{k \in nn(j)} \mathcal{E}_{jk} + \sum_{j \in nn(V), \, j \neq k} \mathcal{E}_{jV}$$

Parameterization of LKMC

Statistics: from first principle DFT-L	A (CASTEP + Chen Möbius	s inversion lattice technique)
--	-------------------------	--------------------------------

$\varepsilon^{\alpha,\alpha'}$	Ni-Ni	Al-Al	Cr-Cr	Ni-Al	Ni-Cr	Al-Cr	V-Ni	V-Al	V-Cr
(eV)							(1)/(2)	(1)/(2)	(1)/(2)
1 st	-0.7485	-0.5786	-0.6845	-0.7495	-0.7582	-0.6963	-0.178	-0.221	-0.223
NN									
2 nd	-0.0135	-0.0265	-0.0112	0.0349	0.0257	0.0225	0/ ε ^{Νι,Νι}	0/ ε ^{Α1,Νi}	0/ε ^{Cr,Ni}
NN									
3 rd	0.0142	0.0084	-0.0185	-0.0285	0.00526	0.0211	0/ ε ^{Νι,Νι}	0/ ε ^{Α1,Νi}	0/ε ^{Cr,Ni}
NN									
4^{th}	-0.00664	-0.0121	-0.00945	0.0125	-0.0166	0.115	0/ ε ^{Νι,Νι}	0/ ε ^{Α1,Νi}	0/ε ^{Cr,Ni}
NN									

Kinetics: fit to impurity diffusion coefficient in Ni (same as Pareige et.al. Acta Mater. 1999)

	Ni	Al	Cr
$E_{sp-i.j}^{\alpha}$ (eV)	-9.750	-9.412	-9.862
ν^{α} (s ⁻¹) (1)/(2)	$1.10 \times 10^{15} / 1.28 \times 10^{15}$	$1.10 \times 10^{15} / 2.26 \times 10^{15}$	$8.7 \times 10^{14} / 1.84 \times 10^{15}$

Vacancy-solute binding energies LKMC

First principle DFT-LDA => Long range vacancy solute binding {1}

LKMC-1 => morphological features & quantitative OK 3D APT LKMC 1

3D-AP / KMC-1 (long range v-s binding)

LKMC-2: no long range s-v binding => no necking

Figure 1:The morphology of γ'-precipitates in Ni 5.2 Al 14.2 Cr at.% after aging at 873 K: (a) As obtained from 3-D APT experiments after 4 hours;
(b) as simulated by LKMC with parameter set 1;
(c) as simulated by LKMC with parameter set 2.

Necking is kinetics

Necking is triggered by kinetics, not by thermodynamics

dilute solutions

coagulation

concentrated solutions

correlated diffusion

migration of clusters (Soisson, Bellon)

Diffusion?=> L, D, fast / medium

$$\tilde{J} = -\overline{\tilde{L}} \nabla \tilde{\mu} = -\overline{\tilde{D}} \nabla \tilde{C} \Omega^{-1} \quad \overline{\tilde{D}} = \overline{\tilde{L}} \overset{=}{\chi}$$

Fast diffusion mode dominates early stage morphogenesis

Distance (m)

Sol. Sol. \land Precipitates

Cr

68

Fast diffusion mode dominates early stage morphogenesis

Fast diffusion mode dominates early stage morphogenesis

Kinetic correlations in fast mode oppose optimum coupling

Kinetic correlations in fast mode oppose optimum coupling

Highly correlated solute cluster diffusion

The significance of the diffusion of solute clusters (n-mers) in a Ni-Al or a Ni-Cr alloy. Diffusion coefficient (m² s⁻¹) of Aland Cr-clusters (n-mers), as a function of the number of atoms (n) in the cluster: black lines for parameter set 1 and red lines for parameter set 2.

Conclusions

Using the very same LKMC to study correlation effects in diffusion and to simulate coherent phase separation + Comparison with 3D-APT

Reveals :

⇒ New mechanisms (necking, elimination of APB's...)
 ⇒ Excellent quantitative agreement with observations in real alloys
 ⇒ Role of Off-diagonal terms of Onsager matrix in the morphogenetic process

This work has been published in Nature Materials, March 2007, and thanks C. Sudbrack and K. Yoon provide APT results.