

First-Principles Calculations of Vacancy Formation Energy

Tao Wang, Long-Qing Chen and Zi-Kui Liu

April 01, 2004

Phases Research Lab

The Pennsylvania State University

Led by Professor Zi-Kui Liu

Computational Thermodynamics, Phase Transformations, and Materials Design of

Aluminum Alloys :	William Golumbfskie, Chao Jiang, Dongwon Shin, Shengjun Zhang Dr. Edwin Garcia, Dr. Ravi Chinnanan		
	Dr. Luwin Gureia, Dr. Ravi eminapan		
Magnesium Alloys :	Yu Zhong, Dr. Raymundo Arroyave		
Nickel Alloys :	Tao Wang , Dr. Jinzhi Zhu, Dr. Yi Wang, Dr. Shihuai Zhou		
Platinum Alloys :	Sara Prins		
Metal Oxide :	Mei Yang, Dr. Zhi-Jie Liu,		

Through First-Principles Calculations, CALPHAD Modeling, and Experiments

Why Vacancy?

- Vacancy is the simplest and commonest lattice defect;
- Vacancy migration is the dominant mechanism behind atomic transport;
- Vacancy plays very important role for surface morphology *;

* K. F. McCarty, et al., Nature, 2001

Experimental Measurement

- Experimental methods regarding the measurement of vacancies are difficult;
- Many technical questions and uncertainties exist for those experiments;
- Different experiments result in a large range of values.

Theoretical Calculation

- Calculate the total energy of a crystal with N atoms, Eo;
- Calculate the total energy of a crystal with N-1 atoms and one defect, E1;
- Defect formation energy:

$$\Delta E_f = E_1 - \frac{N-1}{N}E_0$$

First-Principles Calculations

- FP calculations always underestimate vacancy formation energies.
- LDA is better than GGA for the vacancy formation energy calculation?
- Unrelaxed calculation is better than relaxed calculation for the vacancy formation energy calculation?

FP Calculation on Surface Energy

Observation: FP calculations always underestimate surface energies.

Reason: Both the LDA and GGA have intrinsic errors at surface because the many-body interaction is approximated.

Correction for Calculated Surface Energy

- The intrinsic errors were estimated by jellium model.
- The correction is a function of electron density.
- LDA has smaller intrinsic error than GGA.

T. R. Mattsson and A. E. Mattson, Physical Review B, 2002

Charge Density near Vacancy

K. M. Carling, et al., Physical Review B, 2003

Correction on Vacancy Formation Energy Calculation

As the first approximation, treat the vacancy as an interior surface:

$$\Delta E_c = 4\pi R^2 \Delta \sigma$$

where R is the radius of the "hole".

The corrected vacancy formation energy: $\Delta E_{f}^{corrected} = \Delta E_{f} + \Delta E_{c}$

T. R. Mattsson and A. E. Mattsson, Physical Review B, 2002

Determination of R

- The radius, R, can be estimated by fitting the electron density profile of jellium model to the that of DFT's.
- In fcc AI, R is about 1.2 A.
- Because the above calculation is very complex, the different vacancy formation volumes in different elements are usually ignored.

Our Treatment on R

1) Vacancy formation volume

$$\Delta V = V_1 - \frac{N-1}{N}V_0$$

2) Case I: consider a sphere of that volume, upper bound

$$R_u = \sqrt[3]{\frac{3}{4\pi}} \Delta V$$

Our Treatment on R (cont'd)

$$R_l = 0.5 * \sqrt[3]{\Delta V}$$

4) Using the Δv and R of AI and assuming R as a weighted average of R_I and R_u, we obtain a relation between R and R_I and R_u.

Relation between R and R_I and R_u

- ΔV depends on size of supercell.
- For 32 and 54 atom supercells:

 $R = 0.82R_l + 0.18R_u$

• For 108 and 128 atom supercells:

 $R = 0.71R_l + 0.29R_u$

Assume the same relations for different elements.

R of Some Elements

	$\Delta V(A^3)$	$R_l(A)$	$R_u(A)$	R(A)
Al (32)	12.23	1.15	1.43	1.20
Al (108)	11.37	1.12	1.40	1.20
Ni (32)	7.12	0.96	1.19	1.00
Ni (108)	6.79	0.94	1.17	1.01
Mo (54)	9.78	1.07	1.33	1.12
Mo (128)	8.99	1.04	1.29	1.11
Ta (54)	10.02	1.08	1.34	1.13
Ta (128)	9.81	1.07	1.33	1.14

PENNSTATE Vacancy Formation Energy of Some Fcc Phases

Element	Cell Size, N	E_0	E_1	ΔE_{f}	ΔE_{c}	$\Delta E_{f}^{corrected}$
Al (fcc)	32	-118.0	-113.8	0.568	0.151	0.719
	108	-398.5	-394.3	0.511	-	0.662
	Exp.	0.64, 0.71, 0.66, 0.62, 0.69, 0.67, 0.66, 0.66, 0.66				
Ni (fcc)	32	-175.4	-168.5	1.40	0.48	1.88
	108	-592.1	-585.2	1.39	0.49	1.88
	Exp.	1.72, 1.73, 1.73, 1.55, 1.54				

Energies in eV.

1 8 5 5

PENNSTATE Vacancy Formation Energy of Some Bcc Phases

Element	Cell Size, N	E_0	E_{d}	ΔE_{f}	ΔE_{c}	$\Delta E_{f}^{corrected}$
Mo (bcc)	54	-584.7	-571.3	2.58	0.28	2.86
	128	-1386.2	-1372.7	2.69	0.27	2.96
	Exp.	2.24, 3.0, 3.0, 2.9, 3.6				
Ta (bcc)	54	-622.6	-637.3	2.94	0.20	3.14
	128	-1510.8	-1496.1	2.91	0.20	3.11
	Exp.	2.54, 2.8				1

Energies in eV.

1 8 3 5

Summary

- Some corrections should be applied to FP calculation on vacancy formation energy;
- Mattsson's correction can improve the calculated vacancy formation energy in AI, Ni, Mo, but not for Ta.