
Diffusion in unstable phases or Can we calculate something that does not

Can we calculate something that does not (and cannot) exist in nature?

Y. Mishin Fluids and Materials Program School of Computational Sciences George Mason University Fairfax, Virginia ymishin@gmu.edu

Problem formulation

How to find D_A at $c_B \rightarrow 1$ and D_B at $c_B \rightarrow 0?$

Main difficulty: Element A with the structure of B can be mechanically unstable, and vise versa.

Shear modulus (in GPa) of selected metals

	FCC	BCC
Cu	23.7	-6.8
Ni	43.3	-5.3
AI	26.1	-24.0

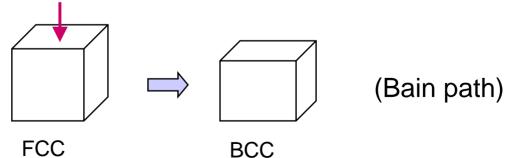
Computed with EAM potentials

$$C' = \frac{c_{11} - c_{12}}{2}$$

 $C' < 0 \rightarrow$ structure unstable against homogeneous shear deformation

Problem formulation (cont'd)

Diffusion calculation in stable phases:

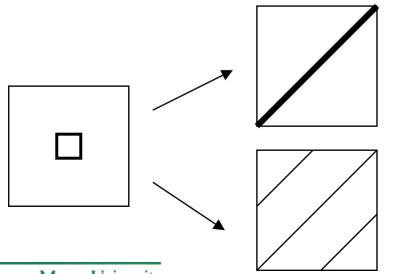

- Vacancy formation energy E_v by molecular statics
- Nacancy formation entropy S_v in the harmonic approximation
- Saddle point search by the nudged elastic band (NEB) method E_m
- Vacancy jump rate in the harmonic TST (Vineyard)

What does not (or may not) work in unstable phases:

Static relaxation may trigger a transformation to the stable structure

Some of the normal frequencies are imaginary \rightarrow harmonic calculations do not work

For example:

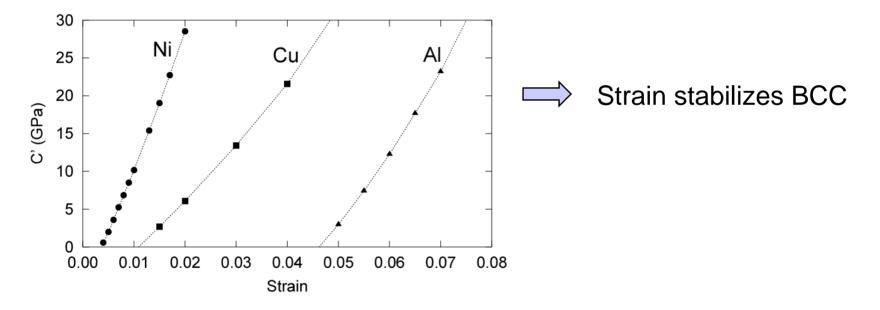

<u>Approach 1</u>: Constraint by periodic boundaries

Idea: Use cubic simulation cell with periodic boundary conditions. The boundary conditions will prevent homogeneous shear deformation.

Tried for Cu, Ni and Al.

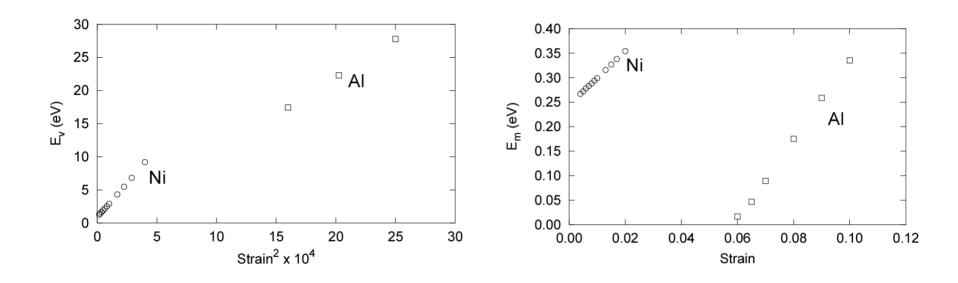
Result: Static relaxation of a vacancy leads to an infinite "crowdion" formation or trigger stacking-fault generation

Conclusion: It does not work.



George Mason University

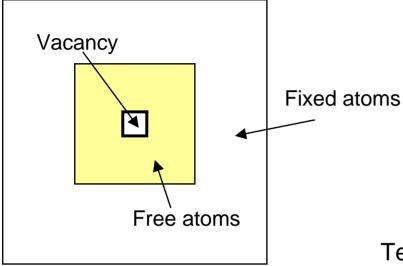
Approach 2: Extrapolation of high-pressure calculations


Idea: Reverse the sign of C' by applying a hydrostatic strain ε . Calculate D as a function of ε . Extrapolate to $\varepsilon \rightarrow 0$.

Tried for Cu, Ni and Al.

George Mason University

Vacancy formation and migration



- Vacancy falls apart during relaxation before C' turns to zero. Low-barrier effect?
- E_m can turns to zero when or before C' turns to zero.
- Calculations are unstable

Conclusion: It does not work.

George Mason University

Approach 3: Constrained relaxation

Number of free atoms must be small (54 in BCC; 32 in FCC)

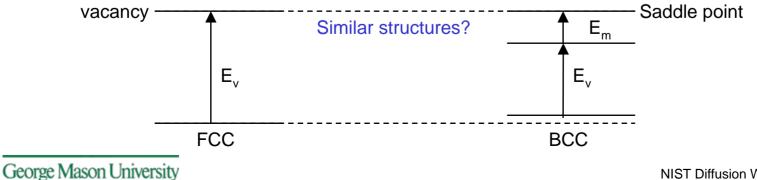
Fixed atoms should stabilize BCC

•Both E_v and E_m will be overestimated

Test: calculation for FCC structures

		Cu			Ni			AI	
	Exper	Exact	Approx	Exper	Exact	Approx	Exper	Exact	Approx
E _v (eV)	1.28	1.272	1.282	1.60	1.57	1.58	0.68	0.71	0.72
E _m (eV)	0.71	0.70	0.74	1.30	1.19	1.27	0.65	0.65	0.69

⇒ Works well for FCC


Does it work for BCC?

	Cu	Ni	AI
E _v (eV)	0.96	1.12	0.30
E _m (eV)	0.32	0.47	0.16
Q _{BCC} (eV)	1.28	1.59	0.46
Q _{FCC} (eV)	2.02	2.85	1.41
Q _{BCC} / Q _{FCC}	0.74	0.56	0.33

Conclusion: It has a potential. Further testing is needed (other metals, more accurate potentials,...).

As an aside:

For Cu and Ni, $Q_{BCC} \approx (E_v)_{FCC}$. Coincidence or...

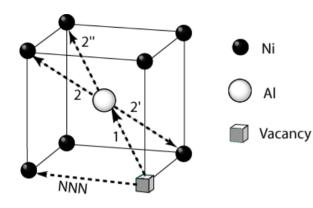
NIST Diffusion Workshop (4/2004)

Diffusion in ordered compounds

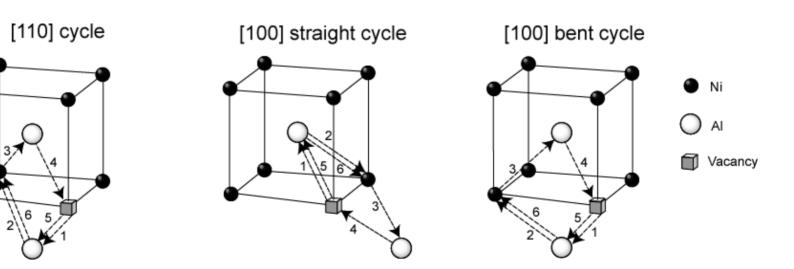
- We need to know diffusion mechanisms in ordered phases:
 - Predictive calculations
 - CALPHAD-type diffusion calculations
 - Interpretation of experiment
- History:
 - Diffusion mechanisms are complex
 - Experimental studies are difficult
 - Several mechanisms were proposed in 1970-80s (6-jump cycles, divacancy, etc.) but verification by simulations was impossible
 - Understanding is still poor
- New capabilities of atomistic simulations (accurate potentials, advanced saddlepoint search, etc.). There is some progress in understanding: direct observation of 6-jump cycles, discovery of collective diffusive jumps, etc.
- New compounds become technologically important (e.g. silicides, etc.).
- There has never been a better time to revisit the problem by theory and experiment.

Creep in ordered compounds

•Key question: What kind of diffusion coefficient (D_c) controls diffusion creep? [Generally, $D_c \neq D_{inter}$]


Example: for a strongly ordered compound: $\frac{1}{D_c} = \frac{c_A}{D_A} + \frac{c_B}{D_B}$

(similar to ambipolar diffusion in ionics)


Creep in disordered alloys (de-alloying, slow species control, etc.)

•What happens in partially disordered compounds?

Diffusion in B2-NiAl

- Ni and Al isolated from each other
- NNN jumps on Ni sublattice
- NN vacancy jumps create mechanically unstable configurations
- Collective two-atom jumps
- Cyclic mechanisms

