DICTRA and Diffusion Assessments

- Diffusion Mobility Assessment: Optimization
- Simulation of Diffusion Controlled Transformations

High Throughput Analysis of Multicomponent Multiphase Diffusion Data March 27-28, 2003

What is needed to simulate multicomponent diffusion?

Multicomponent Thermodynamics: Calphad Approach

NIST

Diffusion Database Development

- Inputs:
 - Calphad Thermodynamics
 - Diffusion experiments (unary, binary, ternary systems)
 - Tracer diffusivity, $\longrightarrow D_{\iota}^* = RTM_{\iota}$
 - Intrinsic diffusivity,
 - Interdiffusion coefficients/Marker motion
- Optimize value of mobilities, M_i , for all binaries consistent with available data
 - Composition and Temperature-dependent
 - Consistent with estimates of Metastable end members e.g., FCC W
 - Optimized using code, DICTRA (Parrot)

$$M_{i} = \frac{M_{i}^{\circ}}{RT} \exp\left(\frac{-\Delta Q_{i}}{RT}\right) \text{ where } \Delta Q_{i} = f(c_{i}, T) \text{ and } M_{i}^{\circ} = 1$$
$$\Delta Q_{i} = \sum_{p=1}^{n} x_{p} Q_{i}^{p}(T) + \sum_{p>q}^{n} \sum_{q=1}^{n} x_{p} x_{q} \, A_{i}^{pq}(T)$$

 \blacktriangleright Add terms $B_i^{ijk}(T)x_ix_jx_k$ if necessary to fit ternary data, etc.

Assessment of Diffusion Mobilities

Assessment of Ni-W

Mobility Description Ni-W

- FCC_A1: Mobility of Ni

 MQ(FCC_A1,NI:VA;0) = -28700+69.8*T
 MQ(FCC_A1,W:VA;0) = V1+R*T*LN(V2)
 MQ(FCC_A1,NI,W:VA;0) = V3+V4*T
- FCC_A1: Mobility of W
 - $-MQ(FCC_A1,NI:VA;0) = V5+R*T*LN(V6)$ $-MQ(FCC_A1,W:VA;0) = V7+R*T*LN(V8)$
 - MQ(FCC_A1,NI,W:VA;0) = **V9+V10*T**

Ni-W: DOP file

- \$\$ Data from Momma et al, J. Japan Inst. Metals, 28 (1964) 197-200.
- \$\$ Measured diffusivity in Ni-W alloys with Ni-63 and W-185
- TABLE_HEAD 655
- CREATE_NEW_EQ @@, 0
- CHANGE_STATUS COMP Ni,W=ENT
- CHANGE_STATUS PHASE FCC_A1=ENT 1
- S-COND X(W)=.017
- S-COND P=101325 N=1 T=@1
- EXPERIMENT LOGDT(FCC,NI)=@2:.05
- TABLE_VALUES
- \$\$Ni-5W
- \$\$ Temp(K) Log(DT)
- 1668 -12.57675413
- 1623 -12.82973828
- 1579 -13.07058107
- 1530 -13.49485002
- 1478 -13.8827287
- 1433 -14.1739252
- 1369 -14.74714697

TABLE_END

Ni-W Interdiffusion: DOP file

- TABLE_HEAD 325
- CREATE_NEW @@,0
- CHANGE_STATUS COMP NI,W=ENT
- CHANGE_STATUS PHASE FCC_A1=ENT 1
- S-COND w(W)=@1
- S-COND N=1 P=101325 T=1273
- EXPERIMENT LOGDC(FCC,W,W,NI)=@2:.1
- TABLE_VALUES
- \$\$ 1000 C
- \$\$ w(W) logD
- 0.00E+00 -16.18708664
- 5.00E-03 -16.15490196
- 1.00E-02 -16.09691001
- 1.50E-02 -16.04575749
- 2.00E-02 -16.00877392
- :
- 9.00E-02 -15.76955108
- 9.50E-02 -15.75696195
- 1.00E-01 -15.74472749
- TABLE_END

NUMBER OF OPTIMIZING VARIABLES: 8 ALL OTHER VARIABLES ARE FIX WITH THE VALUE ZERO THE SUM OF SQUARES HAS CHANGED FROM 5.19453290E+02 TO 5.1944291E+02 DEGREES OF FREEDOM 109. REDUCED SUM OF SQUARES 4.76554396E+00

V2 4 78352423E-04 6 01374702E+00 4 78304593E-04 478304593E-04 V3 17573601E+05 1 75718445E+05 1 75718445E+05 1 44758232E+00 -2 82130025E+05 -2 82130025E+05 -2 82130025E+05 1 95885497F-02 V5 2.79975794E-05 V6 2.80004792E-05 2.79975794E-05 4.48683550E-01 V7 -4 11423418E+5 -3 11392279E+05 -3 11392279E+05 1.02636444E+01 V8 2.18664263E-04 2.18664263E-04 2.18664263E-04 1.19007328E+01 V9 -9.70248906E+4 -9 70151891F+04 -9.70151891E+04 3.15926361E+00

 Value
 START Value
 Scaling Factor
 Rel. Stand. Dev

 V1
 -6.28250129E+05
 -6.28250129E+05
 -6.28250129E+05
 3.85216307E-01

= = OPTIMIZING VARIABLES = = AVAILABLE VARIABLES ARE V1 TO V50

Optimization Results: Tracer Diffusivity

Experimental Quantity	Optimized Value	Acceptable error	Difference	Difference/ Error
LOGDT(FCC_A1,NI)=-12.57	-12.72	5.0E-02	-0.1407	-2.814
LOGDT(FCC_A1,NI)=-12.83	-12.97	5.0E-02	-0.1394	-2.788
LOGDT(FCC_A1,NI)=-13.07	-13.23	5.0E-02	-0.1585	-3.170
LOGDT(FCC_A1,NI)=-13.49	-13.54	5.0E-02	-4.13E-2	-0.826
LOGDT(FCC_A1,NI)=-13.88	-13.88	5.0E-02	-1.59E-3	-3.2E-2
LOGDT(FCC_A1,NI)=-14.17	-14.21	5.0E-02	-3.2E-2	-0.642
LOGDT(FCC_A1,NI)=-14.75	-14.70	5.0E-02	4.72E-2	0.9440

Extrapolation to Higher Order Systems

Ni-Cr
$$\Delta Q_{Ni} = Q_{Ni}^{Ni} x_{Ni} + Q_{Ni}^{Cr} x_{Cr} + A_{Ni}^{NiCr} x_{Ni} x_{Cr}$$
Binary
interaction
Ni-Al
$$\Delta Q_{Ni} = Q_{Ni}^{Ni} x_{Ni} + Q_{Mi}^{Al} x_{Al}$$
$$\Delta Q_{Al} = Q_{Al}^{Ni} x_{Ni} + Q_{Al}^{Al} x_{Al}$$
$$\Delta Q_{Al} = Q_{Al}^{Ni} x_{Ni} + Q_{Al}^{Al} x_{Al}$$
$$\Delta Q_{Al} = Q_{Al}^{Ni} x_{Cr} + Q_{Al}^{Al} x_{Al}$$
$$\Delta Q_{Al} = Q_{Al}^{Ni} x_{Cr} + Q_{Al}^{Al} x_{Al}$$
$$\Delta Q_{Al} = Q_{Al}^{Cr} x_{Cr} + Q_{Al}^{Al} x_{Al}$$
$$\Delta Q_{Al} = Q_{Al}^{Ni} x_{Ni} + Q_{Cr}^{Cr} x_{Cr} + Q_{Al}^{Al} x_{Al}$$
$$\Delta Q_{Al} = Q_{Al}^{Ni} x_{Ni} + Q_{Cr}^{Cr} x_{Cr} + Q_{Al}^{Al} x_{Al}$$
$$Ternary$$
interaction

Examples of Fits for Binary Interactions Ni-Al-Cr-Co-Hf-Nb-Mo-Re-Ta-Ti-W

Previous assessments: Ni-AI-Cr Engström and Ågren, Z. Metallkd. 87 (1996) 92.

Ni-Al-Ti Matan et al., *Acta mater.*, 46 (1998) 4587.

Ni-Co, Ni-Hf, Ni-Mo, Ni-Nb, Ni-Re, Ni-Ta, Ni-Ti, Ni-W, Co-Cr, Co-Mo

Current assessments:

C. E. Campbell, W. J. Boettinger, U. R. Kattner, Acta Mat, 50 (2002) 775

Diffusion Correlation at Melting Temperature

For a pure metal $\frac{-Q}{RT_M} \approx 18$								
Element	Crystal Structure	т _м , К	T _M , K (fcc)	T _M , K (fcc) (Kaufman)	Activation Energy (J/mole)	-Q/RT _M (fcc) (SGTE)	-Q/RT _M (fcc) (Kaufman)	
Ni	fcc	1728	1728	1725	-287000	20.0	20.0	
Al	fcc	933.5	933.5	931	-142000	18.3	18.4	
Cr	bcc	2133	1475	860	-235000	19.2	32.9	
Со	hcp	1770	1768	1768	-286175	19.5	19.5	
Hf	hcp	2504	1952	2076	-235350	14.5	13.6	
Мо	bcc	2895	1740	1530	-254975	17.6	20.0	
Nb	bcc	2468	1300	1170	-274328	25.4	28.2	
Re	hcp	3459	3084	2830	-382950	14.9	16.3	
Та	bcc	3296	1416	1540	-268253	22.8	20.9	
Ti	hcp	1946	900	1421	-256900	34.3	21.7	
W	bcc	3695	2229	2230	-311420	16.8	16.8	

Comparison with Ni-Co-Cr-Mo Data at 1300 °C*

Composition (Atomic Percent) Ni = balance			$\widetilde{D}_{ij}^{Ni} imes 10^{14} m^2/s$			
Cr	Со	Мо	Measured	Calculated		
				NIST	Thermotech	
			$\widetilde{D}^{Ni}_{ m crcr}$			
24.2	24.1	7.4	7.5±1.5	10.2	10.7	
22.7	24.5	7.4	9.7 ± 1.9	10.1	10.6	
20.8	25.0	7.4	9.9 ± 2.0	9.85	10.3	
18.4	25.6	7.2	10.1 ± 2.0	9.56	10.0	
15.2	25.8	7.4	8.2 ± 1.6	9.35	9.74	
10.8	26.2	7.4	6.9 ± 1.4	8.95	9.25	
6.4	27.1	7.7	6.4 ± 1.3	8.4	8.59	
3.2	47.9	7.7	6.8 ± 1.4	4.94	5.03	
				\widetilde{D}	Ni CoCo	
26.8	1.7	6.6	8.9 ± 1.8	10.3	10.3	
26.5	4.4	6.4	6.0 ± 1.2	9.61	9.78	
26.3	7.4	6.6	4.8 ±1.0	8.96	9.22	
25.8	19.8	7.1	3.7 ±0.7	7.01	7.53	
25.8	21.4	7.1	4.2 ± 0.8	6.83	7.58	
25.9	16.2	7.1	3.3 ± 0.7	7.47	7.93	
				\widetilde{D}	Co NiCr	
22.2	3.7	6.2	-2.0 ± 0.4	-2.26	-4.69	
6.5	23.9	7.6	-1.7 ± 0.3	-2.37	-2.27	

[†]Heaney and Dayananda *Metall. Trans. A*, 1986, **17A**, 983.

Diffusion coefficients calculated using the different thermodynamic databases and a fixed diffusion mobility database.

Co-Nb at 1100 C for 1000 h

Mole Fraction Nb

DICTRA*

Diffusion Controlled Transformations

- 1-D finite difference solution to diffusion equations
- Variable self-adjusting mesh
- Volume fixed reference frame
- Vacancy and interstitial diffusion
- Can solve problems with planar layers of
 - single phase material
 - multiphase material (matrix and dispersed phase)
 - describes suitable average concentration of multiphase mixture
 - assumes diffusion only in the matrix phase
 - assumes phase fraction of dispersed phase is small
 - assumes the composition of the dispersed phase is given by local equilibrium for average concentration

^{*} from the Division of Physical Metallurgy, The Royal Institute of Technology, Stockholm, Sweden.

René-N4/René-N5 at 1293 °C for 100 h

Experimental work performed by T. Hansen, P. Merewether, B. Mueller, Howmet Corporation, Whitehall, MI.

Castings

an Alcoa business

Porosity Prediction

René-88/IN-718; 1000 h at 1150 °C

NIST

Experimental data from J. C. Zhao, GE-CRD, Schenectady, NY

Applications of Diffusion Database

- Prediction of γ' precipitation: GE-AIM program:

 Composition and volume of γ' is key to predicting many of mechanical properties
- Back diffusion during solidification: Howmet
- Protective coatings: Howmet
 - B2/Rene-N5 diffusion simulations
 B2 layer dissolves, forms γ' layer
- Heat treatment optimization: avoiding incipient melting.

Transient Liquid Phase Bonding

Heat Treatment Optimization: Solidification of Ni-11Al-4.5Ta (at.%)

- Cooling rate = 8K/s;
- λ/2 = 9.5 μm
- Microstructure evolution

Thermodynamics: Ni-Data, Thermotech Diffusion: Ni-Mob, NIST

Incipient Melting Temperature

Simulation Setup

- Used composition and phase fractions from solidification calculation.
- Assume linear heating rates beginning at 800 K
- Assume γ ' fraction is in equilibrium with γ matrix at each grid point.
- Assume incipient melting occurs at the center between dendrites.

 \leftrightarrow $\lambda/2$

Heating Rate 100 K/s, *T_{IM}*= 1655 K

NIST

Optimized Heat Treatment

NIST