Modeling on Diffusion in Ni-base Superalloy

Tao Wang, Long-Qing Chen and Zi-Kui Liu

The Penn State University

April 19th, 2005

Microstructure Evolution of Ni-base Alloys

□ A real turbine blade made of Ni-base superalloys, a γ (fcc) and γ ' (L12) two phase microstructure from a phase-field simulation, and a schematic phase diagram for the γ and γ ' two-phase field.

Evolution Equations in Phase-field Model

□ M is diffusion mobility and L is phase field mobility.

Modeling on Atomic Mobility

$$M_{i} = \frac{M_{i}^{0}}{RT} \exp(\frac{-Q_{i}}{RT}) = \frac{1}{RT} \exp(\frac{-Q_{i}}{RT} + RT \ln M_{i}^{0})$$

$$M_{i} = \frac{1}{RT} \exp(\frac{-\Delta G_{i}}{RT})$$

$$\Delta G_{i} = \sum_{l} x_{l} \Delta G_{i}^{l} + \sum_{j} \sum_{k>j} x_{j} x_{k} \Delta G_{i}^{j,k}$$

$$M = x_{A} x_{B} (x_{A} M_{B} + x_{B} M_{A})$$

$$M: \text{ diffusion mobility in phase field}$$

$$\Delta G_i^{ord} = \sum_j \sum_{k \neq j} \Delta G_{ijk}^{order} [y_j^{\alpha} y_k^{\beta} - x_j x_k]$$

- Andersson J and Agren J, J Appl Phys, 72 (1992) 1350
- Helander T and Agren J, Acta Mater, 47 (1999) 1141

Thermodynamic Database

> S. Zhou et al., in submission, (2005)

Diffusivity in Ni-Al fcc Phase

> A. Engstrom, J. Agren, Z.Metallkd., 97 (1996) 92

Diffusivity in fcc Phase

Diffusivity in Stoichiometric Compound (Assessment I)

Diffusivity vs Composition (Assessment I)

Diffusion Mechanism in L12

Major element (Ni)*intra-lattice mechanism*

 Minor element (Al)
 six-jump cycle mechanism
 anti-site mechanism
 anti-site bridge mechanism

Diffusivity of Al (1473K)

Diffusivity of Al (973K)

Atomic Description for Diffusivity

□ Ni in the fcc Ni Matrix: $D_{Ni}^{Ni} = a_{Ni}^{2} C_{V}^{Ni} \omega_{0}^{Ni} f^{Ni}$ □ Ni in the Ni3Al Matrix: $D_{Ni}^{Ni_{3}Al} = \frac{2}{3} a_{Ni_{3}Al}^{2} C_{V}^{Ni_{3}Al} \omega_{0}^{Ni_{3}Al} f^{Ni_{3}Al}$ □ Al in the fcc Ni Matrix: $D_{Al}^{Ni} = a_{Ni}^2 C_V^{Ni} \frac{\omega_4^{Ni}}{\omega_3^{Ni}} \omega_2^{Ni} f^{Ni}$ Al in the Ni3Al Matrix: D^{I}

$$\sum_{M}^{Ni_{3}Al} = \frac{2}{3} a_{Ni_{3}Al}^{2} C_{V}^{Ni_{3}Al} \frac{\omega_{4}^{Ni_{3}Al}}{\omega_{3}^{Ni_{3}Al}} \omega_{2}^{Ni_{3}Al} f^{Ni_{3}Al} P_{Al}^{Ni_{3}Al}$$

Numerical Treatment

 \square P_{Al}^{Ni} : anti-site factor.

$$P_{Al}^{Ni} = \frac{y_{Al}^{Ni}}{x_{Al}}$$

 \Box $(\omega_4 / \omega_3)(\omega_2 / \omega_0)$: reflects the impurity-vacancy and impuritymatrix interactions, assumed to be equal for the diffusion of Al in Ni₃Al and fcc Ni.

$$\frac{D_{Al}^{Ni_{3}Al}}{D_{Al}^{Ni}}\frac{D_{Ni}^{Ni}}{D_{Ni}^{Ni_{3}Al}} \approx P_{Al}^{Ni}$$

H. Numakura, et al., Phil. Mag. A, 77 (1998) 887

Dictra Modeling on Diffusivity

Numerical Treatment II

$$\frac{D_{Al}^{Ni_3Al}}{D_{Al}^{Ni}}\frac{D_{Ni}^{Ni}}{D_{Ni}^{Ni_3Al}} = \exp(-\frac{\Delta G_{Al}^{ord} - \Delta G_{Ni}^{ord} + \Delta G'}{RT})$$

□ Where $\Delta G' = \Delta G_{Al}^{dis} + \Delta G_{Ni}^{Ni} - \Delta G_{Al}^{Ni} - \Delta G_{Ni}^{dis}$, which can be calculated from the mobility descriptions of the related disordered phase.

Constraint from Diffusion Mechanism

$$\frac{D_{Al}^{Ni_{3}Al}}{D_{Al}^{Ni}} \frac{D_{Ni}^{Ni}}{D_{Ni}^{Ni_{3}Al}} = P_{Al}^{Ni}$$

$$\frac{D_{Al}^{Ni_{3}Al}}{D_{Al}^{Ni}} \frac{D_{Ni}^{Ni}}{D_{Ni}^{Ni_{3}Al}} = \exp(-\frac{\Delta G_{Al}^{ord} - \Delta G_{Ni}^{ord} + \Delta G'}{RT})$$

$$\bigcup$$

$$\exp(-\frac{\Delta G_{Al}^{ord} - \Delta G_{Ni}^{ord} + \Delta G'}{RT}) = P_{Al}^{Ni}$$

Anti-site Factor

Consider reaction:

 $Ni_{3}Al(L1_{2}) \leftrightarrow (Ni_{0.75}Al_{0.25})_{3}(Ni_{0.75}Al_{0.25})(fcc)$

□ Anti-site factor:

$$P_{Al}^{Ni} = \frac{y_{Al}^{Ni}}{x_{Al}} \approx f_{fcc} \approx \exp(-\frac{\Delta G^{react}}{RT})$$

$$\Delta G_{Al}^{ord} - \Delta G_{Ni}^{ord} + \Delta G' = \Delta G^{react}$$

Diffusivity in Stoichiometric Compound (Assessment II)

Diffusivity vs Composition (Assessment II)

Optimized Parameters for Ni₃Al

	ΔG^{ord}_{AlNiAl}	$\Delta G^{\it ord}_{\it NiNiAl}$	ΔG^{ord}_{AlAlNi}	$\Delta G^{\it ord}_{\it NiAlNi}$
Assessment I	1.8804e+05	-9.3253e+04	6.0418e+05	-5.8868e+05
Assessment II	1.2499e+05	-7.8982e+04	3.6406e+05	-5.3770e+05

• Units: J/mole

Diffusion in L1₂ of the Ni-Al-Mo System

- Since Mo prefers to occupy Al-sites in Ni_3Al ordered phase, we assume:
- The effect of Al-Mo ordering can be ignored.
- The diffusion in the hypothetical $Ni_3Mo L1_2$ ordered phase is similar to that in the Ni_3A1 phase.
- The diffusion of Mo in the $L1_2$ ordered phase is similar to that of Al.

Diffusivity of Mo in Ni₃Al

Phase Field Simulation vs Experimental Investigation

- Alloy: Ni-7.7 at.% Al-7.9 at.% Mo
- System size: 1024nm×1024nm; Temperature: 1048K; Annealing time: 67h
- Left: TEM images; Right: 2D phase-field simulations

Summary

- The atomic mobility modeling of Ni-Mo and Al-Mo fcc phases has been carried out based on the available experimental data. By combining them with previous work on Ni-Al, the mobility database for the fcc phase of the Ni-Al-Mo system has been developed.
- □ The effect of chemical ordering on atomic mobility is described by a phenomenological model. The available experimental data for Ni_3Al are used to evaluate the model parameters.
- □ The anti-site mechanism is found to be dominant for Al diffusion in L1₂. The atomic mobility modeling is then refined based on the anti-site mechanism.
- □ Atomic mobility in the $L1_2$ phase of Ni-Al-Mo system is evaluated from the experimental information in the literature.
- □ Using the above atomic mobility in the fcc and L1₂ phases, phase field simulations for Ni-Al-Mo alloys have been performed.