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Outline
• Phase growth/dissolution in Fe-Cr-Ni
• Transformation behavior under para- and 

ortho-equilibrium interface conditions
• Ferrite growth/dissolution during weld 

thermal cycling
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Phase Growth/Dissolution in Fe-Cr-Ni

• The austenite-ferrite transformation was 
simulated in the Fe-Cr-Ni (model austenitic 
stainless steel) system

• The transformation was driven by 
multicomponent diffusion based on an 
interface equilibrium condition

References:
Vitek, Vitek and David, Metall Mater Trans A, 26A, 1995, 2007
Kajihara and Kikuchi, Acta Metall Mater, 41, 1993, 2045
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Behavior Varied Dramatically, 
Depending on the Conditions

• Initial state was two-phase austenite plus 
10% ferrite, each of uniform composition

• At lower temperatures, ferrite is less stable; 
at higher temperatures it is more stable

• The path to final equilibrium proceeded in 
stages; sometimes ferrite grew and then 
dissolved, or grew continuously, or ….

• Experiments confirmed simulation results

F A



OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Different Paths to Equilibrium Were Found
Initial Fe-21.9Cr-10.35Ni in 
approx. equilibrium at 1000C

Initial Fe-21Cr-11.3Ni in 
approx. equilibrium at 1200C
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The Results Are Readily Explained by 
Examining the Fluxes at the Interface
• Diffusion in ferrite is ~ 100x that of diffusion in 

austenite
• Flux is product of gradient and diffusion coeff.
• Flux on ferrite side of interface dominates in the 

early stages; once ferrite composition is nearly 
uniform, austenite flux controls behavior

Early Later
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Different Combinations of Fluxes 
Were Found in Simulations

Both fluxes lead to ferrite growth Fluxes oppose each other; larger 
ferrite flux controls, leading to 
ferrite growth
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Transformation Behavior Under Para-
and Ortho-Equilibrium at the Interface

• The same ferrite-austenite problem was 
examined with different interface 
conditions

• Para-equilibrium was imposed at the 
interface at the onset

• Once (para) equilibrium was achieved, the 
simulation was continued with ortho-
equilibrium constraints at the interface

Reference:
Vitek, Babu and Kozeschnik, Austenite Formation and 
Decomposition, eds Damm and Merwin, TMS, 2003, p 139
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The Same Types of Behavior Were 
Found
• In the transition from para- to ortho-

equilibrium, ferrite dissolution followed by 
ferrite growth was found

• The change in ferrite fraction could be 
substantial, depending upon the 
conditions

• The same explanation applies; the 
behavior is determined by the relative 
fluxes and is dominated by the ferrite flux 
initially and the austenite flux later
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Simulation Results for Fe-3Mn-0.1C 
at 700C (initially all austenite)

PE OE 28% drop!

Para + Ortho Equilibrium Only Ortho Equilibrium
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Ferrite Growth/Dissolution during 
Weld Thermal Cycling

• The same general problem of following the 
ferrite-austenite transformation was studied

• Thermal cycling was superimposed (to 
simulate welding conditions)

Reference:
Vitek, Iskander and David, Mathematical Modelling of Weld 
Phenomena 3, Ed. Cerjak, Inst. of Materials, 1997, p 199
Vitek and David, Mathematical Modelling of Weld Phenomena 4, Ed. 
Cerjak, Inst. of Materials, 1998, p 321
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Multiple Thermal Cycles Were 
Considered

Model multi-cycle weld Measured multi-cycle weld
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Results for Multi-cycle Welds (I)
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Results for Multi-cycle Welds (II)
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A Wide Range of Behaviors Were 
Found during Thermal Cycling
• Ferrite growth or dissolution did not 

always proceed toward equilibrium
• Behavior was due to gradients that were 

established during thermal cycling and 
resultant net fluxes

• Thermal cycling did not produce 
reversible behavior

• Gradients that are established at onset of 
simulation have important consequences



OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

In Another Study, Simulation Start 
Conditions Had a Profound Influence

• Transient ferrite 
dissolution and growth 
was measured in-situ

• Diffusion under para-
equilibrium interface 
constraints could 
reproduce the time scale 
for the transformation

• The start temperature had 
a strong influence on the 
extent and nature of the 
transformation

Reference: Palmer, Elmer, Babu, 
and Vitek, Austenite Formation and 
Decomposition, eds Damm and 
Merwin, TMS, 2003, p177
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Seemingly Unimportant Changes in 
Start Conditions Can Be Important

Start at T1

C

X
Depending upon start 
T, different gradients 
will be established, 
and these will affect 
behavior even if there 
is no diffusion until 
T>T1,T2 is reached

Start at T2
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Summary – Part 1
• Multicomponent diffusion calculations were 

carried out to simulate the ferrite-austenite 
transformation in steel

• The path toward equilibrium was often 
indirect, with growth followed by dissolution 
or vice versa

• The results are understood if one considers 
the diffusional fluxes at the interface

• The same indirect behavior will occur in any 
system in which diffusion rates in the phases 
under consideration are significantly 
different
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Summary - Part 2
• Caution must be observed when setting the 

simulation conditions
• Interface constraints must be chosen 

correctly (ortho-equilibrium, para-
equilibrium, or something else)

• In addition to the criticality of the simulation 
cell size, changes in initial gradients and 
start temperature may have important 
consequences

• All of these aspects must be considered 
when simulating multi-component diffusion 
problems
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