Grain Boundary Diffusion of Iron, Cobalt and Chromium in High Purity Iron

Akiko Inoue

K. Takasawa, H. Nitta¹, J. Koike² and Y. Iijima³

Graduate student, Department of Materials Science, Tohoku University .1 Institute for Materials Research, Tohoku University .2 Department of Materials Science, Tohoku University .3 Faculty of Engineering, Iwate University

Introduction Self-diffusion along dislocation in Iron

Accurate determination of the grain boundary diffusion and the influence of magnetic spin ordering on grain boundary diffusion in high purity iron

Preparation of Specimens

Table1, Chemical composition [mass ppm]

•		С	Ν	0	Р	S		
		8	5	40	1	2		
		Ni	Cr	Si	В	Cd	Cu	-
		8	1	2	1	1	1	
		Со	Н	Mn	As	Sn		
		36	2	5	1	1		
	.2	С	Ν	0	Ρ	S	Ni	Si
		9	<5	14	<1	<1	7	0.2
	.3	С	Ν	0	Р	S		
		<mark><0.7</mark>	1.0	2.0	<mark><0.5</mark>	1.0		

Experimental Procedure

Analysis of Grain Boundary Diffusion

Results Penetration profiles of ⁵⁹Fe in High Purity Iron

Examples of penetration profiles for grain boundary diffusion of ⁵⁹Fe in high purity iron a) Type B (900~1173 K) and b) Type C (500~850K)

Results Penetration profiles of ⁵⁷Co in High Purity Iron

Examples of penetration profiles for grain boundary diffusion of ⁵⁷Co in high purity iron c) Type B(873~1173 K) and d) Type C(523~703K)

Results Penetration profiles of ⁵¹Cr in High Purity Iron

Examples of penetration profiles for grain boundary diffusion of ⁵¹Cr in high purity iron e) Type B (1053~1163K) and f) Type C (524~603K)

Results Grain Boundary Diffusion of Fe in High Purity iron

Results Grain Boundary Diffusion of Fe in High Purity iron

1.0

Results Grain Boundary Diffusion of Fe in High Purity iron

Grain boundary diffusion in high purity iron The magnetic influence was observed for the first time *Results* Self-Diffusion in High Purity iron

Results Comparison with some previous works

Results Arrhenius plots of $s \delta D_{ab}$ of ${}^{57}Co$ and ${}^{51}Cr$ in High Purity iron.

	Со	Fe	Cr	_
Q ^P /kJ mol ⁻¹	50.4	55.7	63.4	
sδD _{gb,0} /10 ⁻¹⁵ m ³ s ⁻¹	5.0	6.3	28.3	

The Arrhenius plots of Fe, Co and Cr in High Purity Iron

Results

Cr

63.4

28.3

1.05

- 1. The influence of magnetic spin ordering on grain boundary diffusion in iron was observed.
- 2. The degree of influence of magnetic spin ordering on grain boundary diffusion was larger than that on the volume diffusion.
- 3. The influence of magnetic spin ordering changes in the following order:
- 4. The temperature dependence of the Grain Boundary diffusivities of Fe, Co and Cr in high purity α -iron was expressed as follows,

Fe:
$$\delta D_{gb}/m^3 s^{-1} = 6.35^{+6.21}_{-3.19} \times 10^{-15} \exp\left\{-\frac{(55.7 \pm 6.1 \text{kJ mol}^{-1})[1+(1.28 \pm 0.03)M^2]}{RT}\right\}$$

CO: $s \delta D_{gb}/m^3 s^{-1} = 5.00^{+4.17}_{-2.27} \times 10^{-15} \exp\left\{-\frac{(50.4 \pm 5.5 \text{kJ mol}^{-1})[1+(1.49 \pm 0.03)M^2]}{RT}\right\}$
Cr: $s \delta D_{gb}/m^3 s^{-1} = 2.82^{+21.0}_{-2.94} \times 10^{-14} \exp\left\{-\frac{(64.3 \pm 18.5 \text{kJ mol}^{-1})[1+(1.05 \pm 0.03)M^2]}{RT}\right\}$