

Diffusion in AI-Ni-Ce Melts

Axel Griesche, Michael-Peter Macht

HMI Berlin, Dept. Materials (SF3)

Günter Frohberg

TU Berlin, Inst. for Material Sciences and Technology, Dept. Metal Physics

DFG-SPP 1120 > Phase Transformations in Multicomponent Melts<

Motivation

 Influence of structure and thermodynamic forces on diffusion in metallic melts?

 $D_{ik} = (D_i^* N_k + D_k^* N_i) \Phi M$ in melts?

L.S. Darken, Trans. AIME 180 (1948) 430

J.R. Manning, Phys. Rev. 124, 2 (1961) 470

ambiguous result in SnIn melts: $M \neq 1$

G. Frohberg in Scientific Results of the German Spacelab Mission D-2, DLR Cologne (1994) 275ff

AINi₂₀, AINi₂₀Ce₃, AINi₁₀Ce₃

hm

Check for additional Transport

• $x^2 = 2Dt$ \Rightarrow no additional transport

Check for additional Transport

• $x^2 = 2Dt + x_0^2$

 \Rightarrow additional transport segregation Al₃Ni₂

Boltzmann-Matano Analysis

Thermodynamic Factor Φ

R. Schmid-Fetzer / Uni. Clausthal

 $\mu_i = \mu_{0,i} + RT \ln(a_i)$

 $\Phi_i = 1 + (d \ln(\gamma_i) / d \ln(x_i))$

Ni Self Diffusion in AlNi

- Horbach, Meyer et al., APL 82,1 (2005) 11918
 exp. interdiffusion, this work
 - calc. w/ Darken-Eq., M=1

Darken-Test in Al₈₇Ni₁₀Ce₃

- no singularity
- poor agreement
- \Rightarrow Darken fulfilled?

Diffusion in Al₇₇Ni₂₀Ce₃

• Ce decreases D^*_{Ni} (~30%)

 \Rightarrow structural change

 \Rightarrow thermodynamic forces

Diffusion in Al₈₇Ni₁₀Ce₃

- Ce decreases D*_{Ni} (~20%)
- \Rightarrow structural change

Relationship Diffusion - Thermodynamic Force

	ratio D _{ik} / D*	Φ
AINi ₂₀	$D_{AINi} \approx 3.8 \text{ D}^*$	3,8
AINi ₂₀ Ce ₃	$D_{AINi} \approx 5 D^*$	4
AINi ₁₀ Ce ₃	$D_{AINi} \approx 2 D^*$	1,8

• $D_{ik} \approx D^* \Phi$

J. Bøttiger et al., Mat. Sci. Eng. A 178 (1994) 65

Conclusion

- Ce addition decreases $D \Rightarrow$ change in structure
- D^* depends strongly on AINi composition \Rightarrow CSRO
- Φ depends strongly on alloy comp. \Rightarrow strong atomic interaction
- ✓ validation of Darken's equation in molten AlNi₂₀
- qualitative validation of Darken's equation in molten AlNiCe?
 (check Al₇₇Ni₂₀Ce₃)
- ✓ rule-of-thumb: ratio of D_{ik} / D^* correlates with Φ

End

Acknowledgement

- DFG SPP 1120
- Auswärtiges Amt