

Assessment of Analytical Methods for the Determination of Composition-Dependent Interdiffusion Coefficients in Ternary Alloys

Mechanical, Materials and Aerospace Engir

Narayana Garimella, Abby Puccio, Yong-ho Sohn

Advanced Materials Processing and Analysis Center (AMPAC) and Department of Mechanical, Materials and Aerospace Engineering University of Central Florida Orlando, FL

TMS 2005 Annual Meeting and Exhibition, San Francisco, CA Multicomponent Diffusion in Honor of John E. Morral

PROMOTING THE GLOBAL SCIENCE AND ENGINEERING PROFESSIONS CONCERNED WITH MINERALS, METALS, AND MATERIALS

Presentation

Aechanical, Materials and Aerospace Engir

- Interdiffusion in Multicomponent Alloy System
 - **Approaches for the Determination of Interdiffusion coefficients**
 - Boltzman-Matano Analysis
 - Square-root Diffusivity
 - > Average (Main and cross) Interdiffusion Coefficients
 - Discrete (Main and cross) Interdiffusion Coefficients
- Assessment of Composition Dependent Ternary Interdiffusion Coefficients in α(fcc) Cu-Ni-Zn Alloy at 775°C and in β(B2) Fe-Ni-Al Alloys at 1000°C.
- Comparison of Ternary Interdiffusion Coefficents at Ni-9.7Cr-7.7Al (atom%) at 1100°C.
- Summary

Interdiffusion in Multicomponent Alloy System

ical. Materials and Aerospace Engin

Onsager's formalism* for The Interdiffusion Flux of Component i in a Multicomponent System :

$$\tilde{J}_{i} = -\sum_{j=1}^{n-1} \tilde{D}_{ij}^{n} \frac{\partial C_{j}}{\partial x} \quad (i = 1, 2, ..., n-1)$$

where $\partial C_j / \partial x$ is the (n-1) independent concentration gradients

 \tilde{D}_{ij}^{n} is the $(n-1)^{2}$ interdiffusion coefficients

So, this flux equation requires the knowledge of (n-1) Independent Concentrations and (n-1)² Interdiffusion Coefficients.

For a Ternary System:

$$\tilde{f}_1 = -\tilde{D}_{11}^3 \frac{\partial C_1}{\partial x} - \tilde{D}_{12}^3 \frac{\partial C_2}{\partial x}$$
 and $\tilde{J}_2 = -\tilde{D}_{21}^3 \frac{\partial C_1}{\partial x} - \tilde{D}_{22}^3 \frac{\partial C_2}{\partial x}$

* L. Onsager, Phys. Rev., 37 (1931) 405; 38 (1932) 2265; Ann. NY Acad. Sci., 46 (1965) 241.

- Requires Two Independent Diffusion Couples Intersecting at a Common Composition.
- Requires A Significant Number of Diffusion Couple Experiment to Assess Compositional Dependence of Interdiffusion Coefficients.

* J. Kirkaldy, Can. J. Phys., 35 (1957) 435.

Mechanical, Materials and Aerospace Engineerin

Square-Root Diffusivity

The masses accumulated on either side of the Matano-Plane are S_1 and S_2 can be expressed by:.

$$\begin{split} S_{1} &= -\sqrt{\frac{t}{\Pi}} (r_{11} \Delta C_{1}^{0} + r_{12} \Delta C_{2}^{0}) \\ S_{2} &= -\sqrt{\frac{t}{\Pi}} (r_{21} \Delta C_{1}^{0} + r_{22} \Delta C_{2}^{0}) \\ \nabla C_{1}^{M} &= -\frac{1}{2\sqrt{\Pi t}} (r_{11}^{-1} \Delta C_{1}^{0} + r_{12}^{-1} \Delta C_{2}^{0}) \\ \nabla C_{2}^{M} &= -\frac{1}{2\sqrt{\Pi t}} (r_{21}^{-1} \Delta C_{1}^{0} + r_{22}^{-1} \Delta C_{2}^{0}) \end{split}$$

where r_{11} , r_{12} , r_{21} , and r_{22} are square-root diffusivities.

Morral and Coworkers

Determination of Interdiffusion Fluxes in Multicomponent Alloy System

Interdiffusion fluxes of all components can be determined directly from their concentration profiles without the need of the interdiffusion coefficients.

$$\tilde{J}_{i} = \frac{1}{2t} \int_{C_{i}^{-} \text{ or } C_{i}^{+}}^{C_{i}(x)} (x - x_{o}) dC_{i}$$
 (i = 1, 2, ..., n)

where t is time,

 C_i^- and C_i^+ are the terminal concentrations x_o is the Matano plane

M. A. Dayananda and C.W. Kim, Metall. Mater. Trans. A.

Determination of Average Ternary Interdiffusion Coefficients (ATIDC)

Average values of interdiffusion coefficients, treated as a characteristic constants of the diffusion path, can be defined on the basis of Onsager's formalism:

$$\tilde{J}_{i} = -\overline{\tilde{D}}_{i1}^{3} \frac{\partial C_{1}}{\partial x} - \overline{\tilde{D}}_{i2}^{3} \frac{\partial C_{2}}{\partial x}$$
 (i, j=1,2)

where $\overline{\tilde{D}}_{i1}^3$ and $\overline{\tilde{D}}_{i2}^3$ correspond to the average values of main and cross - interdiffusion coefficients,

defined by $\overline{\tilde{D}}_{ij}^3 = \frac{C_j(x_2)}{C_j(x_1)} \tilde{D}_{ij}^3 dC_j / \frac{C_j(x_2)}{\int dC_j} \quad (i=1,2)$

M. A. Dayananda and Y. H. Sohn, Metall. Mater. Trans., 30A (1999) 535. Y.H. Sohn and M.A. Dayananda, Acta Mater., 48 (2000) 1427.

Determination of Average Ternary Interdiffusion Coefficients (ATIDC)

OF CENTRAL FLOP

(+

(+)

 $\overline{(+)}$

M. A. Dayananda and Y. H. Sohn, Metall. Mater. Trans., 30A (1999) 535. Y.H. Sohn and M.A. Dayananda, Acta Mater., 48 (2000) 1427.

- Calculation of interdiffusion fluxes directly from experimental concentration profiles.
- Integration of interdiffusion fluxes over selected composition ranges.
- Determination of interdiffusion coefficients over selected composition ranges.
- Assessment of diffusional interactions among the components as well as contributions from the gradients of concentrations and temperature to interdiffusion fluxes of the individual components.

Determination of Composition Dependent Discrete Ternary Interdiffusion Coefficients (DTIC)

Mechanical, Materials and Aerospace Engineerin

$$\begin{split} \tilde{J}_{1} &= -D_{i1}^{3} \frac{\partial C_{1}}{\partial x} - D_{i2}^{3} \frac{\partial C_{2}}{\partial x} \quad (i=1,2) \\ \tilde{J}(x) &= \frac{1}{2t} \int_{C_{i}^{\pm\infty}}^{C_{i}} (x - x_{o}) dC_{i} = \frac{1}{2t} \Big[(x_{o} - x^{\pm\infty}) C_{i}^{\pm\infty} - \int_{\pm\infty}^{x} C_{i} dx + C_{i} (x - x_{o}) \Big] \\ \tilde{J}_{i} (x - x_{o}) &= -D_{i1}^{3} (x - x_{o}) \frac{\partial C_{1}}{\partial x} - D_{i2}^{3} (x - x_{o}) \frac{\partial C_{2}}{\partial x} \quad (i=1,2) \\ \int_{x_{1}}^{x_{2}} \tilde{J}_{i} (x - x_{o}) dx &= 2t \Big\{ \overline{D}_{i1}^{3} \big[\tilde{J}_{1} (x_{1}) - \tilde{J}_{1} (x_{2}) \big] + \overline{D}_{i2}^{3} \big[\tilde{J}_{2} (x_{1}) - \tilde{J}_{2} (x_{2}) \big] \Big\} \quad (i=1,2) \end{split}$$

$$\frac{\partial \tilde{J}_{i}}{\partial x} = -\tilde{D}_{i1}^{3} \frac{\partial^{2} C_{1}}{\partial x^{2}} - \tilde{D}_{i2}^{3} \frac{\partial^{2} C_{2}}{\partial x^{2}} \quad (i = 1, 2)$$

$$\frac{1}{2t}(x-x_{o})\frac{\partial C_{i}}{\partial x} = -\overline{\tilde{D}}_{i1}^{3}\frac{\partial^{2}C_{1}}{\partial x^{2}} - \overline{\tilde{D}}_{i2}^{3}\frac{\partial^{2}C_{2}}{\partial x^{2}} \quad (i=1,2)$$

ERSITY OF CENTRAL FLOF

 $\overline{\tilde{D}}_{BA}^{C} = -3 \times 10^{-15} \text{ m}^2/\text{sec}$ $\overline{\tilde{D}}_{BB}^{C} = 28 \text{ x } 10^{-15} \text{ m}^2/\text{sec}$

Profiles Generated Based on Ternary Error Function Solution

Input of Constant Ternary Interdiffusion Coefficients is Calculated as Constant **Ternary Interdiffusion Coefficients as a Function** of Composition

Амрас 🌑

- Actual . Calculated

D₁ (m²/s)*10¹⁵

X₀

 $\overline{\tilde{D}}_{AA}^{C}$

 $\overline{\tilde{D}}_{BA}^{C}$

Concentration A (at.%)

ical. Materials and Aerospace Engineering

Xo

- Actual

Calculated

 $\overline{\tilde{D}}^{C}_{BB}$

 $\overline{\tilde{D}}^{C}_{AB}$

Concentration B (at.%)

Mechanical, Materials and Aerospace Engineering

Experimental and calculated concentration profiles* of Cu-Ni-Zn couple, α_5 (Cu-43.5at.%-25.0at.%Zn) vs. α_{12} (Cu-17.5at.%Ni), annealed at 775°C for 48 hours**.

Амрас 🌑

Амрас 🌑

Амрас 🖇

Department of Mechanical, Materials and Aerospace Engineering

Амрас 🌑

Department of Mechanical, Materials and Aerospace Engineering

Assessment of Ternary Interdiffusion Coefficients in β(B2) Fe-Ni-Al Alloy at 1000°C

Couple	Selected Compositions*	Interdiffusion Coefficients [#] \widetilde{D}_{ij}^{Fe} (x 10 ⁻¹⁵ m ² /sec)			Average Interdiff. Coefficients ⁺ $\overline{\widetilde{D}}_{ij}^{Fe}$ (x 10 ⁻¹⁵ m ² /sec)				
80	(atom percent)	D ^{Fe} AlAl	D ^{Fe} _{AlNi}	D ^{Fe} _{NiAl}	D ^{Fe} _{NiNi}	$\overline{\widetilde{D}}_{AlAl}^{Fe}$	$\overline{\widetilde{D}}_{AlNi}^{Fe}$	$\overline{\widetilde{D}}_{NiAl}^{Fe}$	$\overline{\widetilde{D}}_{NiNi}^{Fe}$
$\beta_3 vs. \gamma_5$	Fe-0.6Ni-28.8Al	- 1	-970.6	/	144.5	1769.	-829.8	-127.7	67.2
	Fe-0.4Ni-28.4Al	-/	-810.4		65.3				
	Fe-45.9Ni-34.9Al	14.0	1 - 1	-5.6	-			a short	
	Fe-45.8Ni-34.6Al	2.8		-1.4	-	0			
	Fe-38.7Ni-35.3Al	15.1	-13.5	-4.8	5.1	13.0	-1.3	-6.8	2.9
	Fe-17.8Ni-39.8Al	22.2	-0.3	-4.2	1.6	Real Contraction		1	-
	Fe-14.2Ni-41.0Al	1-17	-6.1	- 1	3.1	and the second		1	
β_{17} vs. β_5	Fe-16.5Ni-37.3Al	33.9		-1.1					North St
	Fe-13.8Ni-40.1Al	48.5	-19.4	-0.9	2.1	88.7	-25.0	-2.0	1.4
	Fe-12.0Ni-40.5Al	88.5	-18.8	-0.4	3.2			1.55	

* selected compositions appear in the diffusion zone of the couples.

ternary interdiffusion coefficients determined by the Boltzmann Matano analysis.

+ determined for the selected composition ranges of the couples.

Concentration Profiles of Ternary Diffusion Couple: γ-Phase Ni-Cr-Al Alloys at 1100°C

Common Composition at Ni-9.7Cr-7.7Al in y-Phase at 1100°C

J.E. Morral and Coworkers

Department of Mechanical, Materials and Aerospace Engin

Method	AlAl (cm²/sec)	AlCr (cm ² /sec)	CrAl (cm ² /sec)	CrCr (cm ² /sec)
BZMA	23.7	8.1	7.4	11.5
KMAZ	28.7	10.1	5.5	10.0
SQRD	22.0	7.6	7.8	12.6
NESH	23.0	7.3	6.3	9.4
ATIDC: 1/3(S)	28.5	9.8	6.8	14.2
ATIDC: 2/4(S)	23.5	17.1	8.6	14.7
DDC: 1/3(S)	13.6	5.6	19.4	17.3
DDC: 2/4(S)	23.0	17.2	7.5	10.2

BZMA: Boltzmann-Matano analysis; KMAZ: Krishtal, Mokrov, Akimov and Zakharov analysis; SQRD: Square-Root Diffusivity; NESH: Nesbitt's Data based on BZMA, AEIDC: Average Effective Interdiffusion Coefficients; DDC: Discrete Interdiffusion Coefficients.

- Alloy Casting by Vacuum Induction Melting, Chill Casting and/or Tri-Arc Melting Furnace. Homogenization Heat Treatment.
- Microstructure, Phase Constituents and Compositional Analysis.
- Assembled with Kovar Steel Jigs.
- Encapsulate in Quartz Tube (Vacuum or Ar-Filled) After Several Vacuum-Hydrogen Flush.
- Diffusion Anneal Using Three-Zone Tube Furnace.
- Metallographic Preparation and Microstructural Analysis.
- Compositional Analysis by Electron Probe Microanalysis (EMPA).
- Interfacial Analysis by Transmission Electron Microscopy (TEM).

Mechanical, Materials and Aerospace Engineerin

Ni-Cr-X (X=Al, Pd, Ge, Si)

Summary

MPAC

- Analytical Techniques Allow Assessment of Reliable and Comparable Interdiffusion Coefficients in Ternary Systems:
 - Boltzmann-Matano Analysis
 - Square-Root Diffusivity
 - Average (Main and cross) Interdiffusion Coefficients
 - Discrete (Main and cross) Interdiffusion Coefficients
- Assessments of Composition Dependent Ternary Interdiffusion Coefficients in α(fcc) Cu-Ni-Zn Alloy at 775°C, β(B2) Fe-Ni-Al Alloys at 1000°C, and at Ni-9.7Cr-7.7Al (atom%) at 1100°C were Carried Out.

Financial Support:

- > National Science Foundation (NSF) CAREER (DMR-0238356).
- USDOE University Turbine Systems Research (UTSR); No. 02-01-SR103.
- USDOE Advanced Gas Turbine Systems Research (AGTSR); No. 01-01-SR091
- > Siemens-Westinghouse Power Corporation, Orlando, FL.
- General Electric Global Research Center, Schenectady, NY.
- > Solar Turbines Incorporated, San Diego, CA.
- Partnership Through Specimen Preparation and Technical Assistance:
 - General Electric Aircraft Engines, Cincinnati, OH.
 - General Electric Power, NC
 - Siemens-Westinghouse Power Corporations, Orlando, FL
 - > Solar Turbines Incorporated, San Diego, CA.
 - > Howmet Research Corporation, Whitehall, MI.
 - Pratt & Whitney, East Hartford, CT.

