Square-Root Diffusivity Method RPI MatLab[©] Code

Afina Lupulescu, Martin Glicksman, Srividya Kailasam*, W. Yang

Rensselaer Polytechnic Institute Troy, NY * NRC Research Associate, EPA, Las Vegas, NV

> *TMS, San Francisco, CA February 14, 2005*

Outline

- Introduction
- Background & Needs
 - *Profiler*, a DOS code (M.K. Stalker, J.E. Morral)
 - Acta Materialia, **51**, 1181-1193, 2003 (MEG & AL)
- RPI's MatLab[©] Multicomponent Diffusion Code
- Testing the code:
 - » 10% Cr –10 %AI –80 %Ni
 - » 43.5% Ni –25 %Zn –31.5 %Cu
 - » 42% Ni –39 %Al 19% Fe
 - » 32.39% Fe-49.41% Mg-18.20% Ca
- Results

RPI Matlab[©] Code: GUI

Rensselaer

RPI Matlab[©] Code: GUI

✓ ZFP of Element 1			
	ZFP of Element 2		
✓ Fluxes of the three elements at	Pick Plots		
Concentration profiles of Element	nt 1 at different times		
Component Fluxes versus Euler	Times		
Sum of the absolute fluxes of th	e three components versus Er	uler angle, Psi	
Integrated Mass Transport Rate	, M, versus Euler angle, Psi		
Sum of the absolute fluxes verse	us Euler angle, Psi		
Component Fluxes versus Euler	angle, when Psi is varied from	n -310 to 50, at zeta*	
Component Fluxes versus Euler	Run		

Rensselaer

RPI Matlab[©] Code: GUI

mes to plot the Concentra	Draw Value	
Enter the time t1:	Hours (Default time is 20 hrs)	Pick Plots
Enter the time t2:	Hours (Default time is 200 hrs)	Timor
Enter the time t3:	Hours (Default time is 2000 hrs)	innes
Enter the time t4:	Hours (Default time is 5000 hrs)	
Enter the time t5:	Hours (Default time is 20000 hrs)	
Enter the time t6:	Hours (Default time is 200000 hrs)	Run

Concentration, Zn, [at%]

Stationary ZFP for Ni

 $\psi = 44.378^{\circ}$

Concentration Profiles for Ni at Different Times

Integrated Mass Concept

• The absolute transport rate for a ternary diffusion zone

$$M \int_{i}^{3} J_{i} d$$

• Carrying out the integration

$$M = \frac{1}{\sqrt{e_1 e_2 t}} \begin{vmatrix} D_{11} & A_{11} & A_{12} & D_{12} & A_{21} & A_{22} \end{vmatrix} \begin{vmatrix} D_{21} & A_{11} & A_{12} & D_{22} & A_{21} & A_{22} \end{vmatrix} \\ \begin{vmatrix} D_{11} & D_{21} & A_{11} & A_{12} & D_{12} & D_{22} & A_{21} & A_{22} \end{vmatrix}$$

Rensselaer

Fe-32.39, Mg-49.41, Ca-18.20 [at%]

Flux versus Distance

Composition	ψ*	Minimum M	Minimum Abs. Flux	Stationary ZFP
[at /o]	deg	Euler Angle	Euler Angle	Euler Angle
Cr – 10 Al – 10 Ni – 80	≈ -29 ≈ 151	≈ 145	≈ 140	≈ -38.1 ≈ 141.9 (Ni)
Ni – 42 Al – 39 Fe –19	≈ 45 ≈ 225	≈ 52	≈ 62	≈ 64.31 ≈ 244.31 (Ni)
Ni – 43.50 Zn – 25.00 Cu – 31.50	≈ -9.7 ≈ 170.3	≈ 172	≈ 175	≈ -3.64 ≈176.36 (Zn)
Fe – 32.39 Mg – 49.41 Ca – 18.20	≈ 69.8 ≈ 249.8	≈ 72	≈ 65	≈71.94 ≈ 251.94 (Fe)

Rensselaer

Summary

- A new MatLab code was developed at RPI to simulate multicomponent diffusion in single-phase ternary alloy systems.
- Numerical data obtained using MatLab script was compared with the output provided by *Profiler* (DOS), and *Kaleidagraph*[©] (Mac-OS).
- The new code was tested with a few alloy sytems including the ternary alloy, 43.5 at%-Ni, 25 at%-Zn, 31.5 at%-Cu, where diffusive spreading is reduced for couples located in composition space close to the minor eigenvalues located at $\psi^* = -9.65^\circ$ and $\psi^* = 170.34^\circ$.
- Stationary ZFPs of the minor component occur at ψ^{Zn}_{ZFP} = -3.64° and also ψ^{Zn}_{ZFP} = 176.36°.
- We predict the end-member compositions for which minimum mass transport rate, *M*, occurs and for different systems.
- Code development work remains in progress.

Rensselaer