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High Temperature Coatings
for Gas Turbine Applications
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@ Coatings Provide Protection of Hot
Components in Advanced Gas
Turbine Engines

- Increase in Performance,
Efficiency, Reliability and
Maintainability.

» Reduction in Emission and
Life Cycle Costs.

@ Processing, Lifetime Prediction and
Failure Mechanisms of High
Temperature Coatings Requires
Knowledge in Multicomponent -
Multiphase Diffusion.
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& Gas Turbine Needs: Oxidation Awec
Resistant and Thermal Barrier Coatings (TBCs)

Oxidation Resistant Overlay Coatings

@ Formation of Protective Oxide Scale
@ NiAl or MCrAlY overlay Coatings
@ Substrate

Thermal Barrier Coatings: Provides Insulation to
the Hot Components such as Blades and Vanes
in Advanced Turbine Engines.

Ceramic Top Coat: ZrO,-7~8wt.% Y,0, (YSZ)
Thermally Grown Oxide (TGO)
Bond Coat: MCrAlY (M = Ni, Co, or Both) or
Aluminide, (Ni,Pt)Al
» Al Reservoir for Oxidation Resistance
» Enhanced Adherence
@ Superalloy Substrate
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Multicomponent-Multiphase Diffusion
in High Temperature Coatings

Multicomponent - Multiphase Diffusion Plays a Critical
Role in Degradations and Failure Mechanisms of High
Temperature Coatings.

Oxidation and Coating-Substrate Diffusion.

Formation of Kirkendall Porosity at Critical Locations.

Phase Transformations in Coatings and Thermally Grown
Oxide.

Internal Oxidation.
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Oxidation and Coating-Substrate Diffusion

@ Al Diffuses Out to Form Al,O; Scale.

» Polymorphic Transformation of
Al,O; Scale.

@ Al Diffuses into the Substrate:
» Dissolution of High Aluminum 8
phase (Al-Reservoir).

» Formation of Deleterious Oxide
Scale Rich in Ni, Co and Cr.

» Formation of Kirkendall
Porosity.

@ Elements Added to the Substrate for
High-Temperature Strengthening
Diffuse into the Coating:

» Affect Near-Surface Mechanical
Properties of a Component.

» Impair the Formation or § N

Adherence of the Protective Backsdatter electron ‘r-nicroglraphs of NiCoCrAIY-ﬂ
L IN738 illustrating dissolution of f-phase as a
Oxide Scale.

function of thermal cyclic oxidation at 1121°C
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Polymorphic Transformation of Al,O, Scale

@ Oxidation with Outward
Diffusion of Aluminum
through the TGO Scale:

» Needle-like whisker
TGO morphology

» Metastable y- and/or 6-
Al O,

@ Oxidation with Inward Diffusion of Oxygen
» Columnar or Equiaxed TGO Grains
> Equilibrium a-Al,O,

@ Polymorphic Transformation within the Al,O,
Scale Influence

- Formation of Voids due to Volume
Contraction

N. MU, Y.H. SOhn,I. Nava, SCT, 2004. TMS
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:‘Polymorphlc Transformatlon and Formation of Voids

Indexing to 6 Al,(

Embedded
particle |
rich in Zr
Indexing to

R P
Continuous columnar

No Damage
v 1 Detected at
" Polishing  + (LN
Artifact: A coat Interface

Bond coat

Bel™ ™ L

MetaStable Al,O, and Mixed
Oxide Zone:

w Initially a Mixture of ZrO,
and 0-Al,O; Trans-
forming to a-Al,O; with
Thermal Cycling.

«» Formation of Voids Near
YSZ/TGO Interface.

% A Significant Amount of
Decohesion at the
YSZ/TGO Interface.

% The Degradation of
YSZ/TGO Interface Can
Influence the Overall
Thermo-Mechanical
Behavior of TBCs.

S.L , Y.H. Sohn, K.S. Murphy,
axman % 3034. urphy. TMS
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Effective Thickness of Oxide (YSZ and TGO)

Governing the Failure of TBCs
As-Coated After Thermal Cycles

é;\z \H |

Release Rate (G)

/\ \ Strain Energy ‘ _Z0%p(1-V*) *

TGO -
Thickness E

Buckling Tendency
(I

Z = Geometry Constant for the TGO; E = Young's Modulus of Al,O,; v =Poisson’s ratio; h = TGO Thickness; G = Strain
Energy Release Rate; ¢ or o, = In-Plane Compressive Stress (due to Thermal Mismatch); || =Buckling Index;

b = Crack Width.

*A.G.Evans et al, Progress in Materials Science 46 (2001) 505-553;
M.C.Shaw Design of Power Electronics Reliability. T IMVIS
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Effective Thickness of Oxide (YSZand TGO)

Governing the Failure of TBCs

Situation | Situation 1l

AN

| i I
Voids and

Decohesion
|

\ TGO

L

Effective

Effective
Thickness

Thickness
TGO/YSZ Effective Strain =
. Buckling
Situation S 0 or Thicknges Energy Tendenc Results
TGO Near for Resisting | Release Rate 1D y
YSZ Buckling (G)
YSZ e
I Good + Low D'ff;:cal:: iz
TGO Similar
TGO + : -
| Flawed Partially YSZ High Easy to Fail

@ The Thickness Governing the Buckling Failure May Include that of TGO
and YSZ Combined.

@ The Microstructure at or near the YSZ/TGO Interface May Play a
Significant Role in Thermo-Mechanical Behavior of Thermal Barrier
Coatings During Thermal Cycling.
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Buckling Failure Mechanisms of TBCs* —
(Incorporating SEM/TEM/STEM Observations)

Critical Size for
YSZ + TGO

Growth of Flaw/Crack
During Cyclic Thermal
Exposure

TBC with Deteriorating
YSZ/TGO Interface
due to Void Formation
near MOZ, Racheting,
and Other Interface
Undulation.

Flaw/Crack Size at
TGO / Bond Coat Interface
Requied for Buckling Spallation

TBC Failure by Spallation

Cyclic Exposure to High Temperature —

*Y.H. Sohn, B. Jayaraj, S. Laxman, B. Franke, J. Byeon, A.M. Karlsson, Journal of Metals, October (2004) 54. TlMVIS
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Al Outward Diffusion along Grain Boundaries ™"

Fe-Cr-Al Alloy
Oxidized @ 1100-1200°C

{4 LL'N:Uj (ch ' Re-oxidaiion

Ih?ul?l

(1) [Pulishing | (df) | Taper section + re-axidation @ Al Outward

Diffusion through
Grain Boundaries
and from New
Oxides above the
Existing Scale.

V. K. Tolpygo and D. R. Clarke Materials at High Temperatures 20 (3) 2003 261-271. TMS



& Oxidation and Interdiffusion: A"""Ac
Recession of (B+y) in NiCoCrAlY

Parabolic Growth of TGO Depletion Zone: D¥=3.4 x 10-15> m?/sec
K, =6.3 x 107 um-sec'”? Interdiffusion Zone: D¢ff = 9.3 x 10-15 m?/sec

B A MY A A LR B YA S M A R Y G W IR S,

EI: As-Coated \ fr B]\ﬁi: 100 Cycles
i i VL% ‘ A d i 1 1

Y.H. Sohn et al., Surf. Coat. Technol., 146-147 (2001) pp. 70-78. TMS
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Interdiffusion and Lifetime

of Oxidation Resistant Coatings

@ 3Xin Lifetime (Measured by Stability of Al-Rich $-NiAl Phase)
Can be Achieved by Appropriate Selection of Substrate
Composition (Given a Coating Composition).

Isothermal Exposure Time, t

E. Perez, Y.H. Sohn, Unpublished Research. TMS



Dissolution of Al-Rich § Phase and Auerc

Formation of Deleterious Oxide Scale

Lifetime of Oxidation Resistant Coatings and TBCs is Significantly
Affected by the Formation of OX|de Scale Rich in Ni, Co and Cr.

BEI: 50 Cyel ‘
¢yc i ’ Ni/Co-Rich

| TGO
)

Ni, Co and Cr Rich
Oxides Form When
Al-Rich p(B,)
Phase is Depleted
from the
NiCoCrAlY

o ATurs Coatings (or Bond
= Bottom of Spalled YSZ g% 7. - Top of YSZ-Spalled Bond Coat Surface -

';E BEI: 400 Cycles S BEI: 400 Cycles Coats) Which

L ‘ P 5 :

e L

ALO,

Initially Consists of
B(B,)+ y(fcc).

Y.H. Sohn etal., Surf Coat Technol 146-147 (2001) pp 70-78 TlM' IS
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Dissolution of Al-Rich § Phase and
Formation of Deleterious Oxide Scale

FCC: a,: 8.0317A

o ‘ [02-2]

L ]
i .
5 1/nm . "

Q ‘(Ni,Co)(AI,Cr)204 Oxide Layer Near the YSZ/TGO Interface
with a Spinel Structure and Lattice Parameter of 8.0317A.

@ Result of an Interplay between Thermodynamics and
Diffusion in Multicomponent System.

S. Laxman, B. Jayaraj, Y.H. Sohn, Unpublished Research. TlMVIS
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Formation of Kirkendall Porosity at the
Coating/Substrate Interface

+ == @ During Isothermal

s Oxidation, Internal
Cavities Form at the
Interface Between
the (Ni,Pt)Al Coating
and the Substrate.

@ After: prolf)ng_ed Top of YSZ-Spalled Bond Coat Surface””
Cyclic Oxidation, SEl;40° Tilt: 419 Cyelos§ - -
Cavities Formatthe « = & =
Interface Between "0
the NiCoCrAlY
Coatings and
Thermally Grown

Oxide Scale.

o

_20pm :

Y.H. Sohn et al., Surf. Coat. Technol.,

*V. K. Tolpygo and D. R. Clarke 146-147 (2001) pp. 70-78.
Acta Mater. 48 (2000) 3283-3293.
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Intrinsic Diffusion of Al and
Formation of Kirkendall Porosity

X
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Diffusion Between Coating and Substrate Averc
Oxide Stringers / Inclusions

TGO (a-Al,0,)

Y-Rich Oxide:

@ Observed as Y,0; on
.3 [ A 5 Several TBC
Traces of MOZ 2 X .
with cra‘cks and : L i 2 % SPGCImenS Of
it ek - L B3 Different NiCoCrAlY
: = Bond Coats.

Hf-Rich Oxide:

N Moz withoids . .~ ‘ »
b SR vamdvéias | @ Hf rich Particles

' Bl RS Exhibits Lattice
b T Parameter > 9A.

- \

]

Rich in Hf, Y,Al

@ (HfO,),, (Al,O,), with
“Pmnb” Structure
and Ordered Oxygen

NiCoCrAlY Lattice.

ALO, TGO

NiCoCrAlY Bondcoate.

S. Laxman, J. Liu, Y.H. Sohn, Unpublished Research. TlMVIS



& Internal Oxidation of NiCoCrAlY Coatings Auerc

Turbine blade

Suction side

Leading .
edge |

20.0kY x160 100pm —— 20.0kY x220 50pm ;

Suction Side of A Pressure Side of A
Turbine Blade Turbine Blade

@ At the Suction Side, Internal Oxidation is Predominant. Diffusion of
Oxygen into the Alloy Form Numerous Small Al,O; Islands Distributed
Evenly in the Coatings.

@ At the Pressure Side, B-phase Depleting Took Place instead of Internal
Oxidation.

J. Liu, Y.H. Sohn, Unpublished Research. TMS
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“Martensitic Phase Transformations in (Ni,Pt)Al and

NiCoCrAlY Coatings

40 1-hr cycles @1121°C

, L1, Martepsitic

@ The Al Content within The g
(B2) Phase Decreases with

Thermal Exposure and The

B (B2) Phase Transforms to

@ |_10 with Twin L1 During Cooling. *D. Pan et al.Acta Materialia 51
Microstructure due to 0 (2005988052275
Martensitic Transformation TMIS




Summary

Multicomponent - Multiphase Diffusion Plays a
Critical Role in Degradations and Failure
Mechanisms of High Temperature Coatings.
Oxidation and Coating-Substrate Diffusion.

Formation of Kirkendall Porosity at Critical
Locations.

Phase Transformations in Coatings and
Thermally Grown Oxide.

Internal Oxidation.
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