Effective diffusivity of heterogeneous systems

Y. Mishin

George Mason University, Fairfax, Virginia 22030

Effective diffusivity of a γ / γ^{\prime} alloy

Generalizations of the problem

- Diffusion in a general two-phase alloy with a periodic structure
- Diffusion in a continuum with periodic diffusivity $D_{i j}(\mathbf{x})$
- Include sink/source functions
- Include segregation in phases
- Include driving force
- Atomic diffusion on superlattices
- Interstitial diffusion in crystals with multiple occupation sites
- Grain boundary diffusion
- Diffusion along a dislocation core

The problem of effective diffusivity

Exact diffusion equation:

Existence of effective diffusivity

$$
\frac{\partial\langle c\rangle}{\partial t}=\sum_{i j} D_{i j}^{e f f} \frac{\partial^{2}\langle c\rangle}{\partial x_{i} \partial x_{j}}
$$

<...> - average over a repeat cell

Step 1: solve three steady-state problems on a repeat cell:

$$
\sum_{i j} \frac{\partial}{\partial x_{i}}\left(D_{i j} \frac{\partial \varphi_{k}}{\partial x_{j}}\right)=0, \quad k=1,2,3
$$

with boundary conditions:

$$
\begin{align*}
& \varphi_{k}\left(\lambda, x_{2}, x_{3}\right)=\varphi_{k}\left(0, x_{2}, x_{3}\right)+\delta_{k 1} \\
& \varphi_{k}\left(x_{1}, \lambda, x_{3}\right)=\varphi_{k}\left(x_{1}, 0, x_{3}\right)+\delta_{k 2} \tag{1}\\
& \varphi_{k}\left(x_{1}, x_{2}, \lambda\right)=\varphi_{k}\left(x_{1}, x_{2}, 0\right)+\delta_{k 3}
\end{align*}
$$

Step 2: find $D_{i j}^{\text {eff }}$ as follows: $D_{i j}^{\text {eff }}=\lambda \sum_{m}\left\langle D_{i m} \frac{\partial \varphi_{j}}{\partial x_{m}}\right\rangle$
NB: Even if the local diffusivity is isotropic, the effective diffusivity can still be a tensor, reflecting the structural anisotropy.

Variational calculation of the effective diffusivity

Step 1: Minimize three functionals:
$\Phi_{k}=\lambda^{2}\left\langle\sum_{i j} D_{i j} \frac{\partial \varphi_{k}}{\partial x_{i}} \frac{\partial \varphi_{k}}{\partial x_{j}}\right\rangle, \quad k=1,2,3$
with boundary conditions:

$$
\begin{aligned}
& \varphi_{k}\left(\lambda, x_{2}, x_{3}\right)=\varphi_{k}\left(0, x_{2}, x_{3}\right)+\delta_{k 1} \\
& \varphi_{k}\left(x_{1}, \lambda, x_{3}\right)=\varphi_{k}\left(x_{1}, 0, x_{3}\right)+\delta_{k 2} \\
& \varphi_{k}\left(x_{1}, x_{2}, \lambda\right)=\varphi_{k}\left(x_{1}, x_{2}, 0\right)+\delta_{k 3}
\end{aligned}
$$

Step 2: find $D_{i j}^{e f f}$ as follows: $D_{i j}^{e f f}=\lambda \sum_{m}\left\langle D_{i m} \frac{\partial \varphi_{j}}{\partial x_{m}}\right\rangle$

In the principal coordinate system the minimum values of Φ_{k} coincide with eigenvalues of $D_{i j}^{e f f}$:

$$
\left(\Phi_{k}\right)_{\min }=D_{k}^{\text {eff }}, \quad k=1,2,3
$$

Upper and lower bounds from the variational approach

Suppose the local diffusivity is isotropic: $D_{\mathrm{ij}}=\delta_{\mathrm{ij}} D(\mathbf{x})$.
Bounds of $D_{1}^{\text {eff }}$:

$$
D_{1}^{-} \leq D_{1}^{\text {eff }} \leq D_{1}^{+}
$$

$$
D_{1}^{+}=\frac{1}{\left\langle\frac{1}{\langle D(\mathbf{x})\rangle_{x_{2} x_{3}}}\right\rangle_{x_{1}}}
$$

Using the relation $\langle D\rangle\left\langle D^{-1}\right\rangle \leq 1$ we obtain the crude estimates:

$$
D_{1}^{-}=\frac{1}{\left\langle\frac{1}{\langle D\rangle}\right\rangle}
$$

$$
D_{1}^{+}=\langle D\rangle
$$

Example: diffusion in a γ / γ^{\prime} - type structure

Upper bound:
$D^{\text {eff }}$ is isotropic

$$
D^{+}=D_{m} \frac{D_{m}+v^{2 / 3}\left(D_{p}-D_{m}\right)}{D_{m}+v^{2 / 3}\left(D_{p}-D_{m}\right)-v\left(D_{p}-D_{m}\right)}
$$

Lower bound:

$$
D^{-}=D_{m} \frac{D_{p}-v^{1 / 3}\left(D_{p}-D_{m}\right)+v\left(D_{p}-D_{m}\right)}{D_{p}-v^{1 / 3}\left(D_{p}-D_{m}\right)}
$$

"Smart" guess: $D^{e f f} \approx \frac{D^{+}+D^{-}}{2}$

Maxwell formula for the effective diffusivity*)

$$
\begin{gathered}
D^{\text {eff }}=D_{m}\left[1+\frac{d\left(D_{p}-D_{m}\right) v}{D_{p}+(d-1) D_{m}-\left(D_{p}-D_{m}\right) v}\right] \\
d=\text { dimensionality of space }
\end{gathered}
$$

$$
\begin{aligned}
& \mathrm{v}=0 \rightarrow \mathrm{D}^{\mathrm{eff}}=\mathrm{D}_{\mathrm{m}} \\
& \mathrm{v}=1 \rightarrow \mathrm{D}^{\mathrm{eff}}=D_{p}
\end{aligned}
$$

Expected to work well in isotropic structures
${ }^{*)}$ J.C. Maxwell, Treatise on Electricity and Magenetism, 3 ${ }^{\text {rd }}$ Edition (Clarendon Press, Oxford, 1904)

Comparison of different solutions

Cubic particles

- The gap between the bounds is relatively narrow
- The average between the bounds is an excellent approximation
- Maxwell is astonishingly good

How to include the segregation

Introduce a period potential $u(\mathbf{x})$ on diffusing atoms.
Equilibrium distribution of atoms: $c_{e q}(\mathbf{x})=c_{0} \exp \left(-\frac{u(\mathbf{x})}{k T}\right)$
Effective diffusion equation

$$
\frac{\partial\langle c\rangle}{\partial t}=\sum_{i j} D_{i j}^{\text {eff }} \frac{\partial^{2}\langle c\rangle}{\partial x_{i} \partial x_{j}}
$$

$D^{\text {eff }}$ is obtained by replacing $D_{\mathrm{ij}}(\mathbf{x})$ by

$$
D_{i j}(\mathbf{x}) \frac{C_{e q}(\mathbf{x})}{\left\langle c_{e q}(\mathbf{x})\right\rangle}
$$

and applying the same procedure as before.
For a two-phase alloy we can reuse all previous solutions with the substitutions

$$
D_{m} \rightarrow D_{m} \frac{c_{m}}{v c_{p}+(1-v) c_{m}} \quad D_{p} \rightarrow D_{p} \frac{c_{p}}{v c_{p}+(1-v) c_{m}}
$$

Effect of segregation on diffusion

Cubic particles

- Segregation in particles \rightarrow trapping \rightarrow low $D^{\text {eff }}$
- Segregation in matrix \rightarrow lack of fast diffusion paths \rightarrow low $D^{\text {eff }}$

Slow diffusion in particles

- Segregation in particles \rightarrow lack of fast diffusion paths + trapping \rightarrow very low Deff
- Segregation in matrix \rightarrow axcess to fast diffusion paths \rightarrow large $D^{\text {eff }}$

Effect of segregation on diffusion

Weakly inhomogeneous systems

Uncorrelated fluctuations always slow down the effective diffusivity

Further generalizations

General form of the effective diffusion equation:

$$
\frac{\partial\langle c\rangle}{\partial t}=\sum_{i j} D_{i j}^{e f f} \frac{\partial^{2}\langle c\rangle}{\partial x_{i} \partial x_{j}}+\sum_{i j} \frac{D_{i j}^{e f f}\langle c\rangle}{k T} \frac{\partial\langle U\rangle}{\partial x_{i}}+\langle f(\mathbf{x}, t)\rangle
$$

- U - "slow" field: $|\nabla U| \lambda \ll U$
- The "fast" component of field, $u(\mathbf{x})$, is incorporated into $D^{\text {eff }}$
- $f(\mathbf{x}, t)$ - sink/source function

This generalization does not affect the calculation of $D^{\text {eff }}$!

Discrete model

- N sites per repeat cell
- Site energies $u(\mathbf{x})$
- Jump rates $\Gamma\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$

How to find $D^{\text {eff }} ?$

Examples of applications:

- Interstitial diffusion in crystals with multiple occupation sites. For example, T and O sites in BCC and HCP crystals
- Grain boundary diffusion
- Diffusion in dislocation cores
- Diffusion in polymers

Exact solution of the model

$$
\begin{gathered}
D_{i j}^{\text {eff }}=\sum_{\left\{\mathbf{x}, \mathbf{x}^{\prime}\right\}} c(\mathbf{x}) \Gamma\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\left(x_{i}^{\prime}-x_{i}\right)\left[\left(x_{j}{ }_{j}-x_{j}\right)+S_{j}\left(\mathbf{x}^{\prime}\right)-S_{j}(\mathbf{x})\right] \\
c(\mathbf{x})=\frac{\exp \left(-\frac{u(\mathbf{x})}{k T}\right)}{\sum_{\mathbf{x}^{\prime}} \exp \left(-\frac{u\left(\mathbf{x}^{\prime}\right)}{k T}\right)} \text { - equilibrium occupation probabilities }
\end{gathered}
$$

$\mathbf{S}(\mathbf{x})$ - displacement vectors (Huntington and Ghate, 1962)
They must be determined by solving the 3Nx3N linear system:

$$
\sum_{\mathbf{x}^{\prime}} \Gamma\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\left[\mathbf{S}\left(\mathbf{x}^{\prime}\right)-\mathbf{S}(\mathbf{x})+\left(\mathbf{x}-\mathbf{x}^{\prime}\right)\right]=0
$$

Example:

$$
D^{\text {eff }}=\lambda^{2}\left(\frac{1}{c_{1} \Gamma_{12}}+\frac{1}{c_{2} \Gamma_{23}}+\ldots+\frac{1}{c_{N} \Gamma_{N 1}}\right)^{-1}
$$

Variational formulation and bounds

The displacement vectors can be found by minimizing the functions

$$
\Phi_{i}=\sum_{\left\{\mathbf{x}, \mathbf{x}^{\prime}\right\}} c(\mathbf{x}) \Gamma\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\left[\left(x_{i}^{\prime}-x_{i}\right)+S_{i}\left(\mathbf{x}^{\prime}\right)-S_{i}(\mathbf{x})\right]^{2}, \quad i=1,2,3
$$

In the principal coordinate system the minimum values of Φ_{i} coincide with eigenvalues of $D_{i j}^{\text {eff }}$:

$$
\left(\Phi_{k}\right)_{\min }=D_{i}^{\text {eff }}, \quad i=1,2,3
$$

This allows calculations of bounds of $D_{1}^{\text {eff }}$

Summary

- Effective diffusivity in any periodic system, atomic or continuum, can be calculated exactly or approximated by bounds
- The discrete model can be used for numerical solution of the continuum problem
- Segregation, driving forces, sinks and sources can be readily included
- The discrete model does not include the defectinduced (Bardeen-Herring) correlations

